Skip to main content
Log in

Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract.

The extremely halophilic archaeon, Halorhabdus utahensis, isolated from the Great Salt Lake, Utah, produced β-xylanase and β-xylosidase activities. Both enzymes were active over a broad NaCl range from near zero to 30% NaCl when tested with culture broth. A broad NaCl optimum was observed for β-xylanase activity between 5% and 15% NaCl, while β-xylosidase activity was highest at 5% NaCl. Almost half of the maximum activities remained at 27%–30% NaCl for both enzyme activities. When dialyzed culture supernatant and culture broth were employed for determination of β-xylanase and β-xylosidase stabilities, approximately 55% and 83% of the initial β-xylanase and β-xylosidase activities, respectively, remained after 24 h incubation at 20% NaCl. The enzymes were also shown to be slightly thermophilic; β-xylanase activity exhibiting two optima at 55° and 70°C, while β-xylosidase activity was optimal at 65°C. SDS-PAGE and zymogram techniques revealed the presence of two xylan-degrading proteins of approximately 45 and 67 kDa in culture supernatants. To our knowledge, this paper is the first report on hemicellulose-degrading enzymes produced by an extremely halophilic archaeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wainø, M., Ingvorsen, K. Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis . Extremophiles 7, 87–93 (2003). https://doi.org/10.1007/s00792-002-0299-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-002-0299-y

Navigation