Skip to main content
Log in

Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The thermophilic fungus Scytalidium thermophilum produced large amounts of periplasmic β-D-xylosidase activity when grown on xylan as carbon source. The presence of glucose in the fresh culture medium drastically reduced the level of β-D-xylosidase activity, while cycloheximide prevented induction of the enzyme by xylan. The mycelial β-xylosidase induced by xylan was purified using a procedure that included heating at 50°C, ammonium sulfate fractioning (30–75%), and chromatography on Sephadex G-100 and DEAE-Sephadex A-50. The purified β-D-xylosidase is a monomer with an estimated molecular mass of 45 kDa (SDS-PAGE) or 38 kDa (gel filtration). The enzyme is a neutral protein (pI 7.1), with a carbohydrate content of 12% and optima of temperature and pH of 60°C and 5.0, respectively. β-D-Xylosidase activity is strongly stimulated and protected against heat inactivation by calcium ions. In the absence of substrate, the enzyme is stable for 1 h at 60°C and has half-lives of 11 and 30 min at 65°C in the absence or presence of calcium, respectively. The purified β-D-xylosidase hydrolyzed p-nitrophenol-β-D-xylopyranoside and p-nitrophenol-β-D-glucopyranoside, exhibiting apparent K m and V max values of 1.3 mM, 88 μmol min−1 protein−1 and 0.5 mM, 20 μmol min−1 protein−1, respectively. The purified enzyme hydrolyzed xylobiose, xylotriose, and xylotetraose, and is therefore a true β-D-xylosidase. Enzyme activity was completely insensitive to xylose, which inhibits most β-xylosidases, at concentrations up to 200 mM. Its thermal stability and high xylose tolerance qualify this enzyme for industrial applications. The high tolerance of S. thermophilum β-xylosidase to xylose inhibition is a positive characteristic that distinguishes this enzyme from all others described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Almeida EM, Polizeli MLTM, Terenzi HF, Jorge JA (1995) Purification and biochemical characterization of β-xylosidase from Humicola grisea var. thermoidea. FEMS Microbiol Lett 130:171–176

    Article  Google Scholar 

  2. Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2001) Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungus Scytalidium thermophilum. Folia Microbiol (Praha) 46:11–16

    Google Scholar 

  3. Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 61:323–328

    CAS  PubMed  Google Scholar 

  4. Bütner R, Bode R (1992) Purification and characterization of β-xylosidase activities from the yeast Arxula adeninivorans. J Basic Microbiol 32:159–166

    PubMed  Google Scholar 

  5. Cai YJ, Buswell JA, Chang ST (1998) β-Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microb Technol 22:122–129

    Article  CAS  Google Scholar 

  6. Davis BJ (1964) Disc electropohoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:4040–427

    Google Scholar 

  7. Deshpande V, Lachke A, Misha C, Keskar S, Rao M (1986) Mode of action ande properties of xylanase and β-xylosidase from Neurospora crassa. Biotechnol Bioeng 28:1832–1837

    CAS  Google Scholar 

  8. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35:210–215

    CAS  Google Scholar 

  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal chem 28:350–356

    CAS  Google Scholar 

  10. Ghosh M, Das A, Mishra AK, Nanda G (1993) Aspergillus sydowii MG 49 is strong producer of thermostable xylanolytic enzymes. Enzyme Microbiol Technol 15:703–709

    Article  CAS  Google Scholar 

  11. Guimarães LHS, Terenzi HF, Jorge JA, Polizeli MLTM (2001) Thermostable conidial and mycelial alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum. J Ind Microbiol Biotechnol 27:265–270

    Article  PubMed  Google Scholar 

  12. Hebraud M, Fevre M (1990) Purification and characterization of an extracellular β-xylosidase from the rumen anaerobic fungus Neocallimastix frontalis. FEMS Microbiol Lett 72:11–16

    Article  CAS  Google Scholar 

  13. Hermann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) The β-D-xylosidase of Trichoderma reesei is a multifunctional β-D-xylan xylohydrolase. Biochem J 321:375–381

    PubMed  Google Scholar 

  14. Iwashita K, Todoroki K, Kimura H, Shimoi H, Ito K (1998) Purification and characterization of extracellular and cell wall bound β-glucosidases from Aspergillus kawachii. Biosc Biotechnol Biochem 62:1938–1946

    CAS  Google Scholar 

  15. John M, Schmidt B, Schmidt J (1979) Purification and some properties of five endo-1,4-β-xylanases and a β-D-xylosidase produced by a strain of Aspergillus niger. Can J Biochem 57:125–134

    CAS  PubMed  Google Scholar 

  16. Kadowaki MK, Polizeli MLTM, Terenzi HF, Jorge JA (1996) Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochim Biophys Acta 1291:199–205

    Article  CAS  PubMed  Google Scholar 

  17. Kimura I, Yoshioka N, Tajima S (1999) Purification and characterization of a β-glucosidase with β-xylosidase activity from Aspergillus sojae. J Biosci Bioeng 87:538–541

    Article  CAS  Google Scholar 

  18. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    PubMed  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bateriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    PubMed  Google Scholar 

  22. Mandels GR (1953) Localization of carbohydrases at the surface of fungus spores by acid treatment. Exp Cell Res 5:48–55

    CAS  PubMed  Google Scholar 

  23. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  24. Monti R, Terenzi HF, Jorge JA (1991) Purification and properties of an extracellular xylanase from the thermophilic fungus Humicola grisea var. thermoidea. Can J Microbiol 37:675–681

    CAS  Google Scholar 

  25. Öscan S, Kötter P, Ciriacy M (1991) Xylan-hydrolysing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195

    Google Scholar 

  26. Peralta RM, Kadowaki MK, Terenzi HF, Jorge JA (1997) A highly thermostable β-glucosidase activity from thermophilic fungus Humicola grisea var. thermoidea: purification and biochemical characterization. FEMS Microbiol lett 146:291–295

    Article  CAS  Google Scholar 

  27. Poutanen K, Pulls J (1988) Characteristics of Trichoderma reesei β-xylosidase and its use in hydrolysis of solubilized xylans. Appl Microbiol Biotechnol 28:425–432

    CAS  Google Scholar 

  28. Poutanen K, Ratto M, Pulls P, Viikari L (1987) Evalualtion of different microbial xylanolytic system. J Biotechnol 6:49–60

    CAS  Google Scholar 

  29. Rizzati ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli, MLTM (2001) Purification and properties of a thermostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:1–5

    Article  Google Scholar 

  30. Rosemberg SL (1978) Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi. Mycologia 70:1–13

    Google Scholar 

  31. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  32. Straatsma G, Samson RA (1993) Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycol Res 97:321–328

    Google Scholar 

  33. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    CAS  PubMed  Google Scholar 

  34. Van Peij NNME, Brinkman J, Vrsanská M, Visser J, de Graaff LH (1997) β-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem 245:164–173

    PubMed  Google Scholar 

  35. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching from a idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  36. Wong KKK, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms functions and applications. Microbiol Rev 52:305–317

    PubMed  Google Scholar 

  37. Zamost BL, Nielsen HK, Starnes RL (1991) Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–82

    CAS  Google Scholar 

  38. Zeikus JG, Lee C, Lee YE, Saha, BC (1991) Thermostable saccharidases: a new sources, uses and biodesign. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, pp 36–51

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP. HFT, JAJ and MLTMP are research fellows of CNPq. FFZ was a recipient of support of FAPESP. This work is part of a Master Thesis submitted by FFZ to the Biology Department of the FFCLRP-University of São Paulo. We thank Dr. RPM Furriel for a critical reading of the manuscript and Mauricio de Oliveira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Atílio Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanoelo, F.F., Polizeli, M.L.T.M., Terenzi, H.F. et al. Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum . J IND MICROBIOL BIOTECHNOL 31, 170–176 (2004). https://doi.org/10.1007/s10295-004-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0129-6

Keywords

Navigation