Skip to main content
Log in

Recent progress of two-dimensional metal-base catalysts in urea oxidation reaction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Urea oxidation reaction (UOR) is an auxiliary water electrolysis hydrogen production technology developed in recent years to replace oxygen evolution reaction and reduce energy consumption, which can produce hydrogen more efficiently by low theoretical potential, reduce the average cost of electrochemical hydrogen production, and is a frontier research hotspot for renewable hydrogen energy. Two-dimensional (2D) nanomaterials as electrocatalysts have many favorable potential, such as it can effectively reduce the resistivity of materials and increase the specific surface area with certainty. This paper reviews the application of 2D materials in UOR in alkaline electrolytes. And a cross-sectional comparison of various material performance data including overpotential, Tafel slope, electrochemical active surface area (ECSA) and i-t stability test was conducted, which could illustrate the differences between materials composed of different elements. In addition, the main challenges hindering the progress of research on 2D materials in urea electrocatalysis processes and promising materials in this field in future are summarized and prospected. It is believed that this review will contribute to designing and analyzing high-performance 2D urea electrocatalysts for water splitting.

Graphical abstract

摘要

尿素氧化反应( UOR)是近年来发展起来的替代析氧反应、降低能耗的辅助电解水制氢技术, 可通过较低的理论电位更高效地制取氢气, 降低电化学制氢的平均成本, 是可再生氢能源的前沿研究热点。二维( 2D)纳米材料作为电催化剂的应用具有许多有利的潜力, 如它可以有效地降低材料的电阻率, 并有确定性地增加比表面积。本文综述了2D材料在碱性电解液中UOR中的应用。并对包括过电位、Tafel斜率、电化学活性表面积( ECSA)和稳定性测试在内的各种材料性能数据进行了横向比较, 以说明不同元素组成的材料之间的差异。此外, 总结了阻碍二维材料在尿素电催化过程中研究进展的主要挑战以及展望了未来该领域中具有前景的材料。相信本综述将有助于设计和分析用于水分解的高性能2D尿素电催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [27]. Copyright 2020, Elsevier. d P-mAuRh film and lattice fringes in square area; e LSV curves of P-mAuRh/NF and contrasts in 1 mol·L−1 KOH solution with 0.33 mol·L−1 urea; f i-t test at 100 mA·cm−2. Reproduced with permission from Ref. [36]. Copyright 2022, Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [41]. Copyright 2018, American Chemical Society. d Schematic diagram of NiFe NCs/GO; e i-t stability test obtained CV curves of initial and after 2000 cycles. Reproduced with permission from Ref. [49]. Copyright 2018, Royal Society of Chemistry

Fig. 6
Fig. 7

Reproduced with permission from Ref. [67]. Copyright 2019, The Royal Society of Chemistry. d LSV curves with or without Co2+ contains; e HRTEM image of WM-Ni0.99Co0.01(OH)2; f synthesis steps of Co doping defect engineering. Reproduced with permission from Ref. [68]. Copyright 2023, WILEY

Fig. 8

Reproduced with permission from Ref. [71]. Copyright 2023, American Chemical Society. Partial DOS of e initial Ni(OH)2 and g F-doped Ni(OH)2 monolayers; f LSV curves of F-Ni(OH)2 and its contrast samples; h polarization of F-Ni(OH)2||RuCo-OH in 1 mol·L−1 KOH with or without 0.33 mol·L−1 urea. Reproduced with permission from Ref. [72]. Copyright 2021, Wiley

Fig. 9

Reproduced with permission from Ref. [76]. Copyright 2022, Elsevier. d DFT calculation of CO2 desorption steps for NiFe-LDH and NiFeO-LDH; e LSV curves. Reproduced with permission from Ref. [81]. Copyright 2023, Elsevier. f Schematic model of NiOOH (LDH/α-FeOOH); g Ni L-edge X-ray absorption spectroscopy (XAS); h Ni K-edge EXAFS of oscillations for NiOOH (LDH/α-FeOOH) and its contrast; i LSV curves. Reproduced with permission from Ref. [82]. Copyright 2023, Wiley

Fig. 10

Reproduced with permission from Ref. [84]. Copyright 2020, American Chemical Society. DFT calculation of d CO2 desorption steps for Ni3S2 and NiOOH; e two steps of NH3 desorption in UDR and CO2 desorption in UOR; in-situ f Raman spectroscopy and g FTIR spectroscopy. Reproduced with permission from Ref. [81]. Copyright 2023, Elsevier. h UDR reaction steps and i corresponding LSV curves; j chronopotentiometry (CP) test. Reproduced with permission from Ref. [85]. Copyright 2023, Royal society of chemistry

Fig. 11

Reproduced with permission from Ref. [86]. Copyright 2019, Elsevier. d Calculated band structures and DOS of NiTe2 and NiTe; e CO2 adsorption on HO-NiTe2 (011) and HO-NiTe (101) surface; f LSV curves of NiSe2/NF in 1 mol·L−1 KOH with or not 0.33 mol·L−1 urea. Reproduced with permission from Ref. [87]. Copyright 2019, American Chemical Society. g Model of crystal structure in adsorption of H2O; h DOS of M-Co-NiOOH; i UOR polarization curves. Reproduced with permission from Ref. [88]. Copyright 2021, Elsevier

Fig. 12

Reproduced with permission from Ref. [89]. Copyright 2019, Elsevier. e Reaction steps of urea in 1 mol·L−1 KOH on surface of Ni2P and β-Ni(OH)2; f comparison of electrocatalytic UOR activity between Ni2P and other once-reported catalysts; g electrochemical activity in UOR and OER. Reproduced with permission from Ref. [90]. Copyright 2019, American Chemical Society. h Schematic diagram of MoO2-MoO3/Ni2P/NF; i SEM image of MoO2-MoO3/Ni2P/NF; j polarization and k Tafel slope curves of MoO2-MoO3/Ni2P/NF and its comparative catalysts. Reproduced with permission from Ref. [91]. Copyright 2021, Elsevier

Fig. 13

Reproduced with permission from Ref. [93]. Copyright 2017, Royal Society of Chemistry. d Synthesis scheme of NiIr-MOF; e SEM image; f LSV curves of NiIr-MOF and its contrast samples in 1 mol·L−1 KOH with 0.5 mol·L−1 urea. Reproduced with permission from Ref. [100]. Copyright 2020, Royal Society of Chemistry. g Synthesis scheme of Co8FeS8@CoFe-MOF/NF and CoFe-MOF/NF; h LSV curves of Co8FeS8@CoFe-MOF/NF in 1 mol·L−1 KOH with or without 0.33 mol·L−1 urea; i stability test of Co8FeS8@CoFe–MOF/NF. Reproduced with permission from Ref. [102]. Copyright 2023, Elsevier

Similar content being viewed by others

References

  1. Balat M. Status of fossil energy resources: a global perspective. Energy Source Part B Econ Plant Policy. 2007;2(1):31. https://doi.org/10.1080/15567240500400895.

    Article  CAS  Google Scholar 

  2. Wang LQ, Wang WY, Huang JH, Tan RQ, Song WJ, Chen JM. Growth and properties of hydrogenated microcrystalline silicon thin films prepared by magnetron sputtering with different substrate temperatures. Rare Met. 2022;41(3):1037. https://doi.org/10.1007/s12598-015-0510-9.

    Article  CAS  Google Scholar 

  3. Wang ZD, Lai ZQ. Preparation and characterization of single (200)-oriented TiN thin films deposited by DC magnetron reactive sputtering. Rare Met. 2022;41(4):1380. https://doi.org/10.1007/s12598-015-0517-2.

    Article  CAS  Google Scholar 

  4. Moriarty P, Honnery D. Hydrogen’s role in an uncertain energy future. Int J Hydrog Energy. 2009;34(1):31. https://doi.org/10.1016/j.ijhydene.2008.10.060.

    Article  CAS  Google Scholar 

  5. Lang YZ, Arnepalli RR, Tiwari A. A review on hydrogen production: methods, materials and nanotechnology. J Nanosci Nanotechnol. 2011;11(5):3719. https://doi.org/10.1166/jnn.2011.4157.

    Article  CAS  PubMed  Google Scholar 

  6. Dorofeeva OV, Iorish VS, Novikov VP, Neumann DB. NIST-JANAF thermochemical tables. II. Three molecules related to atmospheric chemistry: HNO3, H2SO4, and H2O2. J Phys Chem Ref Data. 2003;32(2):879. https://doi.org/10.1063/1.1547435.

    Article  CAS  Google Scholar 

  7. Smestad GP. Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Sol Energy Mater Sol Cells. 2009;93(3):387. https://doi.org/10.1016/j.solmat.2008.12.027.

    Article  CAS  Google Scholar 

  8. Ren X, Wu TZ, Sun YM, Li Y, Xian GY, Liu XH, Shen CM, Gracia J, Gao HJ, Yang HT, Xu ZJ. Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun. 2021;12(1):2608. https://doi.org/10.1038/s41467-021-22865-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan X, Tan SY, Yang JJ, Liu YX, Bian WY, Liao F, Lin HP, Li YY. From theory to experiment: cascading of thermocatalysis and electrolysis in oxygen evolution reactions. ACS Energy Lett. 2022;7(1):343. https://doi.org/10.1021/acsenergylett.1c02380.

    Article  CAS  Google Scholar 

  10. Xu W, Wu Z, Tao S. Urea-based fuel cells and electrocatalysts for urea oxidation. Energy Technol. 2016;4(11):1329. https://doi.org/10.1002/ente.201600185.

    Article  CAS  Google Scholar 

  11. Prommet P. A case studying of nature light source with hydrogen quantity used in small-sized regenerative fuel cell. Energy Proced. 2017;138:105. https://doi.org/10.1016/j.egypro.2017.10.069.

    Article  CAS  Google Scholar 

  12. Yang F, Hu P, Yang F, Hua XJ, Chen B, Gao LL, Wang KS. Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten. 2024;6(1):77. https://doi.org/10.1007/s42864-023-00229-x.

    Article  Google Scholar 

  13. Zhang Q, Yan MM, Du WF, Yin CY, Zhang J, Yang L, Kang YQ, He HY, Huang HJ. Spatial construction of ultrasmall Pt-decorated 3D spinel oxide-modified N-doped graphene nanoarchitectures as high-efficiency methanol oxidation electrocatalysts. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02418-6.

    Article  Google Scholar 

  14. Dong L, Chang GR, Feng Y, Yao XZ, Yu XY. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Met. 2022;41(5):1583. https://doi.org/10.1007/s12598-021-01881-3.

    Article  CAS  Google Scholar 

  15. Chen CQ, Fan XS, Zhou C, Lin L, Luo Y, Au C, Cai GH, Wang XY, Jiang LL. Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: effect of CeO2 morphology. J Rare Earths. 2023;41(7):1014. https://doi.org/10.1016/j.jre.2022.05.001.

    Article  CAS  Google Scholar 

  16. Gao YM, Liu Y, Feng KJ, Ma JQ, Miao YJ, Xu BR, Pan KM, Osaka A, Wang GX, Zhang KK, Zhang QB. Emerging WS2/WSe2@graphene nanocomposites: synthesis and electrochemical energy storage applications. Rare Met. 2024;43(1):1. https://doi.org/10.1007/s12598-023-02424-8.

    Article  CAS  Google Scholar 

  17. Li Z, He X, Qian Q, Zhu Y, Feng Y, Wan W, Zhang G. Active site implantation for Ni(OH)2 nanowire network achieves superior hybrid seawater electrolysis at 1 A cm−2 with record-low cell voltage. Adv Funct Mater. 2023;33(41):2304079. https://doi.org/10.1002/adfm.202304079.

    Article  CAS  Google Scholar 

  18. Yao QL, He M, Kong YR, Gui T, Lu ZH. Y2O3-functionalized graphene-immobilized Ni-Pt nanoparticles for enhanced hydrous hydrazine and hydrazine borane dehydrogenation. Rare Met. 2023;42(10):3410. https://doi.org/10.1007/s12598-023-02330-z.

  19. Tong Y, Chen P, Zhang M, Zhou T, Zhang L, Chu W, Wu C, Xie Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018;8(1):1. https://doi.org/10.1021/acscatal.7b03177.

    Article  CAS  Google Scholar 

  20. Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation strategies for the preparation of high-performance catalysts for urea oxidation reaction and their applications. Small. 2023;19(45):2301130. https://doi.org/10.1002/smll.202301130.

    Article  CAS  Google Scholar 

  21. Boggs BK, King RL, Botte GG. Urea electrolysis: direct hydrogen production from urine. Chem Commun. 2009;32:4859. https://doi.org/10.1039/b905974a.

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv Sci. 2023;10(13):2207519. https://doi.org/10.1002/advs.202207519.

    Article  CAS  Google Scholar 

  23. Vedharathinam V, Botte GG. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim Acta. 2013;108:660. https://doi.org/10.1016/j.electacta.2013.06.137.

    Article  CAS  Google Scholar 

  24. Vedharathinam V, Botte GG. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim Acta. 2012;81:292. https://doi.org/10.1016/j.electacta.2012.07.007.

    Article  CAS  Google Scholar 

  25. Daramola DA, Singh D, Botte GG. Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. J Phys Chem A. 2010;114(43):11513. https://doi.org/10.1021/jp105159t.

    Article  CAS  PubMed  Google Scholar 

  26. Ji ZJ, Song YJ, Zhao SH, Li Y, Liu J, Hu WP. Pathway manipulation via Ni Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation. ACS Catal. 2022;12(1):569. https://doi.org/10.1021/acscatal.1c05190.

    Article  CAS  Google Scholar 

  27. Ma G, Xue Q, Zhu J, Zhang X, Wang X, Yao H, Zhou G, Chen Y. Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Appl Catal B. 2020;265: 118567. https://doi.org/10.1016/j.apcatb.2019.118567.

    Article  CAS  Google Scholar 

  28. Mushiana T, Khan M, Abdullah MI, Zhang N, Ma M. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022;15:5014. https://doi.org/10.1007/s12274-022-4186-9.

    Article  CAS  Google Scholar 

  29. Wang Y, Liu G. Reduced graphene oxide supported nickel tungstate nano-composite electrocatalyst for anodic urea oxidation reaction in direct urea fuel cell. Int J Hydrog Energy. 2020;45(58):33500. https://doi.org/10.1016/j.ijhydene.2020.09.095.

    Article  CAS  Google Scholar 

  30. Li J, Li M, Gui P, Zheng L, Liang J, Xue G. Hydrothermal synthesis of sandwich interspersed LaCO3OH/Co3O4/graphene oxide composite and the enhanced catalytic performance for methane combustion. Catal Today. 2019;327:134. https://doi.org/10.1016/j.cattod.2018.05.027.

    Article  CAS  Google Scholar 

  31. Li Q, Lu L, Liu J, Shi W, Cheng P. Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. J Energy Chem. 2021;63:230. https://doi.org/10.1016/j.jechem.2021.04.015.

    Article  CAS  Google Scholar 

  32. Wang JH, Yang SW, Ma FB, Zhao YK, Zhao SN, Xiong ZY, Cai D, Shen HD, Zhu K, Zhang QY, Cao YL, Wang TS, Zhang HP. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten. 2023. https://doi.org/10.1007/s42864-023-00223-3.

    Article  Google Scholar 

  33. Wang D, Liu S, Gan Q, Tian J, Isimjan TT, Yang X. Two-dimensional nickel hydroxide nanosheets with high-content of nickel (III) species towards superior urea electro-oxidation. J Electroanal Chem. 2018;829:81. https://doi.org/10.1016/j.jelechem.2018.10.007.

    Article  CAS  Google Scholar 

  34. Simka W, Piotrowski J, Nawrat G. Influence of anode material on electrochemical decomposition of urea. Electrochim Acta. 2007;52(18):5696. https://doi.org/10.1016/j.electacta.2006.12.017.

    Article  CAS  Google Scholar 

  35. Urbanczyk E, Jaron A, Simka W. Electrocatalytic oxidation of urea on a sintered Ni-Pt electrode. J Appl Electrochem. 2017;47(1):133. https://doi.org/10.1007/s10800-016-1024-3.

    Article  CAS  Google Scholar 

  36. Zhang M, Duan Z, Cui L, Yu H, Wang Z, Xu Y, Li X, Wang L, Wang H. A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. J Mater Chem A. 2022;10(6):3086. https://doi.org/10.1039/d1ta09061e.

    Article  CAS  Google Scholar 

  37. Li CJ, Shan GC, Guo CX, Ma RG. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction. Rare Met. 2023;42(6):1778. https://doi.org/10.1007/s12598-022-02234-4.

    Article  CAS  Google Scholar 

  38. King RL, Botte GG. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J Power Sour. 2011;196(22):9579. https://doi.org/10.1016/j.jpowsour.2011.06.079.

    Article  CAS  Google Scholar 

  39. Yan W, Wang D, Botte GG. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim Acta. 2012;61:25. https://doi.org/10.1016/j.electacta.2011.11.044.

    Article  CAS  Google Scholar 

  40. Xu W, Zhang H, Li G, Wu Z. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Sci Rep. 2014;4(1):5863. https://doi.org/10.1038/srep05863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun Y, Duan J, Zhu J, Chen S, Antonietti M. Metal-cluster-directed surface charge manipulation of two-dimensional nanomaterials for efficient urea electrocatalytic conversion. ACS Appl Nano Mater. 2018;1(12):6649. https://doi.org/10.1021/acsanm.8b01470.

    Article  CAS  Google Scholar 

  42. Luong QT, Kang SY, Lee D, Song J, Karuppannan M, Cho YH, Kwon OJ. An effective strategy for preparing nickel nanoparticles encapsulated in polymer matrix-derived carbon shell with high catalytic activity and long-term durability toward urea electro-oxidation. Mater Chem Front. 2021;5(12):4626. https://doi.org/10.1039/d1qm00305d.

    Article  CAS  Google Scholar 

  43. Zhang G, Xia BY, Xiao C, Yu L, Wang X, Xie Y, Lou XW. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed. 2013;52(33):8643. https://doi.org/10.1002/anie.201304355.

    Article  CAS  Google Scholar 

  44. Xiao C, Li S, Zhang X, MacFarlane DR. MnO2/MnCo2O4/Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. J Mater Chem A. 2017;5(17):7825. https://doi.org/10.1039/c7ta00980a.

    Article  CAS  Google Scholar 

  45. Basumatary P, Konwar D, Yoon YS. A novel NiCu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances. Electrochim Acta. 2018;261:78. https://doi.org/10.1016/j.electacta.2017.12.123.

    Article  CAS  Google Scholar 

  46. Sial MAZG, Liu S, Zou J, Luo Q, Saleemi AS, Liu L, Zhao F, Yao Y, Zeng X. NiCoFe alloy multishell hollow spheres with lattice distortion to trigger efficient hydrogen evolution in acidic medium. Sustain Energy Fuels. 2019;3(12):3310. https://doi.org/10.1039/C9SE00504H.

    Article  CAS  Google Scholar 

  47. Vilana J, Gomez E, Valles E. Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation. Appl Surf Sci. 2016;360:816. https://doi.org/10.1016/j.apsusc.2015.11.072.

    Article  CAS  Google Scholar 

  48. Shi W, Ding R, Li X, Xu Q, Liu E. Enhanced performance and electrocatalytic kinetics of Ni-Mo/graphene nanocatalysts towards alkaline urea oxidation reaction. Electrochim Acta. 2017;242:247. https://doi.org/10.1016/j.electacta.2017.05.002.

    Article  CAS  Google Scholar 

  49. Ge X, Yin L, Zhang L, Shi C, Shen Q, Ma W, Yang X, Sun Y, Li C. Ultrafast preparation of NiFe nanocluster/graphene heterojunction catalysts for oxygen evolution reaction and urea oxidation reaction. CrystEngComm. 2023;25(6):925. https://doi.org/10.1039/d2ce01491b.

    Article  CAS  Google Scholar 

  50. Modak A, Mohan R, Rajavelu K, Cahan R, Bendikov T, Schechter A. Metal-organic polymer-derived interconnected Fe-Ni alloy by carbon nanotubes as an advanced design of urea oxidation catalysts. ACS Appl Mater Interfaces. 2021;13(7):8461. https://doi.org/10.1021/acsami.0c22148.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Xing F, Zhang H, Huang Y. Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation. Dalton Trans. 2020;49(40):13962. https://doi.org/10.1039/d0dt02459g.

    Article  CAS  PubMed  Google Scholar 

  52. Basumatary P, Lee UH, Konwar D, Yoon YS. An efficient tri-metallic anodic electrocatalyst for urea electro-oxidation. Int J Hydrog Energy. 2020;45(57):32770. https://doi.org/10.1016/j.ijhydene.2020.04.223.

    Article  CAS  Google Scholar 

  53. Lv Z, Li Z, Tan X, Li Z, Wang R, Wen M, Liu X, Wang G, Xie G, Jiang L. One-step electrodeposited NiFeMo hybrid film for efficient hydrogen production via urea electrolysis and water splitting. Appl Surf Sci. 2021;552:149514. https://doi.org/10.1016/j.apsusc.2021.149514.

    Article  CAS  Google Scholar 

  54. Juranic N. Nephelauxetic effect in paramagnetic shielding of transition-metal nuclei in octahedral-d6 complexes. J Am Chem Soc. 1988;110(25):8341. https://doi.org/10.1021/ja00233a010.

    Article  CAS  Google Scholar 

  55. Hameed RMA, Medany SS. NiO nanoparticles on graphene nanosheets at different calcination temperatures as effective electrocatalysts for urea electro-oxidation in alkaline medium. J Colloid Interface Sci. 2017;508:291. https://doi.org/10.1016/j.jcis.2017.08.048.

    Article  CAS  PubMed  Google Scholar 

  56. Wang D, Vijapur SH, Wang Y, Botte GG. NiCo2O4 nanosheets grown on current collectors as binder-free electrodes for hydrogen production via urea electrolysis. Int J Hydrog Energy. 2017;42(7):3987. https://doi.org/10.1016/j.ijhydene.2016.11.048.

    Article  CAS  Google Scholar 

  57. Ding R, Qi L, Jia M, Wang H. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale. 2014;6(3):1369. https://doi.org/10.1039/c3nr05359h.

    Article  CAS  PubMed  Google Scholar 

  58. Gao W, Wang C, Ma F, Wen D. Highly active electrocatalysts of CeO2 modified NiMoO4 nanosheet arrays towards water and urea oxidation reactions. Electrochim Acta. 2019;320: 134608. https://doi.org/10.1016/j.electacta.2019.134608.

    Article  CAS  Google Scholar 

  59. Zhang H, Bai Y, Lu X, Wang L, Zou Y, Tang Y, Zhu D. Ni-doped MnO2 nanosheet arrays for efficient urea oxidation. Inorg Chem. 2023;62(12):5023. https://doi.org/10.1021/acs.inorgchem.3c00234.

    Article  CAS  PubMed  Google Scholar 

  60. Gopi S, Ramu AG, Al-Mohaimeed AM, Choi D, Yun K. Heterostructure Co3O4@NiO as bifunctional electrocatalyst for high efficient urea oxidation and hydrogen evolution reaction. Mater Lett. 2022;308:131219. https://doi.org/10.1016/j.matlet.2021.131219.

    Article  CAS  Google Scholar 

  61. Ji X, Zhang Y, Ma Z, Qiu Y. Oxygen vacancy-rich Ni/NiO@NC nanosheets with schottky heterointerface for efficient urea oxidation reaction. Chemsuschem. 2020;13(18):5004. https://doi.org/10.1002/cssc.202001185.

    Article  CAS  PubMed  Google Scholar 

  62. Xu Q, Yu T, Chen J, Qian G, Song H, Luo L, Chen Y, Liu T, Wang Y, Yin S. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction. ACS Appl Mater Interfaces. 2021;13(14):16355. https://doi.org/10.1021/acsami.1c01188.

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Yan W, Botte GG. Exfoliated nickel hydroxide nanosheets for urea electrolysis. Electrochem Commun. 2011;13(10):1135. https://doi.org/10.1016/j.elecom.2011.07.016.

    Article  CAS  Google Scholar 

  64. Ghanem MA, Al-Mayouf AM, Singh JP, Arunachalam P. Concurrent deposition and exfoliation of nickel hydroxide nanoflakes using liquid crystal template and their activity for urea electrooxidation in alkaline medium. Electrocatalysis. 2017;8(1):16. https://doi.org/10.1007/s12678-016-0336-8.

    Article  CAS  Google Scholar 

  65. Andriichuk IL, Tsymbal LV, Lampeka YD. Effect of the structure of Nickel(II) coordination polymers as precursors of nickel hydroxide coatings on their structure and electrocatalytic properties in the oxidation of urea in basic solutions. Theor Exp Chem. 2019;55(5):324. https://doi.org/10.1007/s11237-019-09624-3.

    Article  CAS  Google Scholar 

  66. Yang W, Yang X, Hou C, Li B, Gao H, Lin J, Luo X. Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Appl Catal B. 2019;259:118020. https://doi.org/10.1016/j.apcatb.2019.118020.

    Article  CAS  Google Scholar 

  67. Yang W, Yang X, Li B, Lin J, Gao H, Hou C, Luo X. Ultrathin nickel hydroxide nanosheets with a porous structure for efficient electrocatalytic urea oxidation. J Mater Chem A. 2019;7(46):26364. https://doi.org/10.1039/c9ta06887b.

    Article  CAS  Google Scholar 

  68. Liu Y, Yang Z, Zou Y, Wang S, He J. Trace cobalt doping and defect engineering of high surface area alpha-Ni(OH)2 for electrocatalytic urea oxidation. Energy Environ Mater. 2023;2:12576. https://doi.org/10.1002/eem2.12576.

    Article  CAS  Google Scholar 

  69. Cao Z, Mao H, Guo X, Sun D, Sun Z, Wang B, Zhang Y, Song XM. Hierarchical Ni(OH)2/polypyrrole/graphene oxide nanosheets as excellent electrocatalysts for the oxidation of urea. ACS Sustain Chem Eng. 2018;6(11):15570. https://doi.org/10.1021/acssuschemeng.8b04027.

    Article  CAS  Google Scholar 

  70. Meng J, Chernev P, Mohammadi MR, Klingan K, Loos S, Pasquini C, Kubella P, Jiang S, Yang X, Cui Z, Zhu S, Li Z, Liang Y, Dau H. Self-supported Ni(OH)2/MnO2 on CFP as a flexible anode towards electrocatalytic urea conversion: the role of composition on activity, redox states and reaction dynamics. Electrochim Acta. 2019;318:32. https://doi.org/10.1016/j.electacta.2019.06.013.

    Article  CAS  Google Scholar 

  71. Qin H, Ye Y, Li J, Jia W, Zheng S, Cao X, Lin G, Jiao L. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv Funct Mater. 2023;33(4):2209698. https://doi.org/10.1002/adfm.202209698.

    Article  CAS  Google Scholar 

  72. Patil SJ, Chodankar NR, Hwang SK, Rama Raju GS, Huh YS, Han YK. Fluorine engineered self-supported ultrathin 2D nickel hydroxide nanosheets as highly robust and stable bifunctional electrocatalysts for oxygen evolution and urea oxidation reactions. Small. 2021;18(7):2103326. https://doi.org/10.1002/smll.202103326.

    Article  CAS  Google Scholar 

  73. Babar P, Lokhande A, Karade V, Pawar B, Gang MG, Pawar S, Kim JH. Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustain Chem Eng. 2019;7(11):10035. https://doi.org/10.1021/acssuschemeng.9b01260.

    Article  CAS  Google Scholar 

  74. Wang Z, Liu W, Hu Y, Guan M, Xu L, Li H, Bao J, Li H. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl Catal B. 2020;272:118959. https://doi.org/10.1016/j.apcatb.2020.118959.

    Article  CAS  Google Scholar 

  75. Liu Y, Wang Y, Liu B, Mahmoud A, Kai Y. Cobalt-vanadium layered double hydroxides nanosheets as high-performance electrocatalysts for urea oxidation reaction. Acta Phys Chim Sin. 2023;39(2):2205028. https://doi.org/10.3866/pku.Whxb202205028.

    Article  Google Scholar 

  76. Wang Z, Liu W, Bao J, Song Y, She X, Hua Y, Lv G, Yuan J, Li H, Xu H. Modulating electronic structure of ternary NiMoV LDH nanosheet array induced by doping engineering to promote urea oxidation reaction. Chem Eng J. 2022;430:133100. https://doi.org/10.1016/j.cej.2021.133100.

    Article  CAS  Google Scholar 

  77. Sun H, Zhang W, Li JG, Li Z, Ao X, Xue KH, Ostrikov KK, Tang J, Wang C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B. 2021;284:119740. https://doi.org/10.1016/j.apcatb.2020.119740.

    Article  CAS  Google Scholar 

  78. Li Q, Huang F, Li S, Zhang H, Yu XY. Oxygen vacancy engineering synergistic with surface hydrophilicity modification of hollow Ru doped CoNi-LDH nanotube arrays for boosting hydrogen evolution. Small. 2022;18(2):2104323. https://doi.org/10.1002/smll.202104323.

    Article  CAS  Google Scholar 

  79. Zeng M, Wu J, Li Z, Wu H, Wang J, Wang H, He L, Yang X. Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustain Chem Eng. 2019;7(5):4777. https://doi.org/10.1021/acssuschemeng.8b04953.

    Article  CAS  Google Scholar 

  80. Wang T, Wu H, Feng C, Zhang L, Zhang J. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis. J Mater Chem A. 2020;8(35):18106. https://doi.org/10.1039/d0ta06030e.

    Article  CAS  Google Scholar 

  81. Wei J, Wang J, Sun X. H2O2 treatment boosts activity of NiFe layered double hydroxide for electro-catalytic oxidation of urea. J Environ Sci. 2023;129:152. https://doi.org/10.1016/j.jes.2022.08.023.

    Article  CAS  Google Scholar 

  82. Cai M, Zhu Q, Wang X, Shao Z, Yao L, Zeng H, Wu X, Chen J, Huang K, Feng S. Formation and stabilization of NiOOH by introducing alpha-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv Mater. 2023;35(7):2209338. https://doi.org/10.1002/adma.202209338.

    Article  CAS  Google Scholar 

  83. Zhu W, Yue Z, Zhang W, Hu N, Luo Z, Ren M, Xu Z, Wei Z, Suo Y, Wang J. Wet-chemistry topotactic synthesis of bimetallic iron-nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. J Mater Chem A. 2018;6(10):4346. https://doi.org/10.1039/c7ta10584c.

    Article  CAS  Google Scholar 

  84. Yang H, Yuan M, Sun Z, Wang D, Lin L, Li H, Sun G. In situ construction of a Mn2+-doped Ni3S2 electrode with highly enhanced urea oxidation reaction performance. ACS Sustain Chem Eng. 2020;8(22):8348. https://doi.org/10.1021/acssuschemeng.0c02160.

    Article  CAS  Google Scholar 

  85. Xiao Z, Qian Y, Tan T, Lu H, Liu C, Wang B, Zhang Q, Sarwar MT, Gao R, Tang A, Yang H. Energy-saving hydrogen production by water splitting coupling urea decomposition and oxidation reactions. J Mater Chem A. 2022;11(1):259. https://doi.org/10.1039/d2ta07152e.

    Article  CAS  Google Scholar 

  86. Xiong P, Ao X, Chen J, Li JG, Lv L, Li Z, Zondode M, Xue X, Lan Y, Wang C. Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Eletrochim Acta. 2019;297:833. https://doi.org/10.1016/j.electacta.2018.12.043.

    Article  CAS  Google Scholar 

  87. Wang Z, Guo P, Liu M, Guo C, Liu H, Wei S, Zhang J, Lu X. Rational design of metallic NiTex (x=1 or 2) as bifunctional electrocatalysts for efficient urea conversion. ACS Appl Energy Mater. 2019;2(5):3363. https://doi.org/10.1021/acsaem.9b00208.

    Article  CAS  Google Scholar 

  88. Wang Y, Chen N, Du X, Han X, Zhang X. Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. J Alloys Compd. 2022;893:162269. https://doi.org/10.1016/j.jallcom.2021.162269.

    Article  CAS  Google Scholar 

  89. Zheng J, Wu K, Lyu C, Pan X, Zhang X, Zhu Y, Wang A, Lau WM, Wang N. Electrocatalyst of two-dimensional CoP nanosheets embedded by carbon nanoparticles for hydrogen generation and urea oxidation in alkaline solution. Appl Surf Sci. 2020;506:144977. https://doi.org/10.1016/j.apsusc.2019.144977.

    Article  CAS  Google Scholar 

  90. Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y. Ni2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale. 2021;13(3):1759. https://doi.org/10.1039/d0nr08025j.

    Article  CAS  PubMed  Google Scholar 

  91. Hu L, Jin L, Zhang T, Zhang J, He J, Chen D, Li N, Xu Q, Lu J. Self-supported MoO2-MoO3/Ni2P hybrids as a bifunctional electrocatalyst for energy-saving hydrogen generation via urea-water electrolysis. J Colloid Interface Sci. 2022;614:337. https://doi.org/10.1016/j.jcis.2022.01.129.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao Z, Liu Y, Yi W, Wang H, Liu Z, Yang Jh, Zhang M. Sheeted NiCo double phosphate in situ grown on nickel foam toward bifunctional water and urea oxidation. Electrocatalysis. 2023;14(2):247. https://doi.org/10.1007/s12678-022-00793-9.

    Article  CAS  Google Scholar 

  93. Zhu D, Guo C, Liu J, Wang L, Du BY, Qiao SZ. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem Commun. 2017;53(79):10906. https://doi.org/10.1039/c7cc06378d.

    Article  CAS  Google Scholar 

  94. Jiang H, Bu S, Gao Q, Long J, Wang P, Lee CS, Zhang W. Ultrathin two-dimensional nickel-organic framework nanosheets for efficient electrocatalytic urea oxidation. Mater Today Energy. 2022;27:101024. https://doi.org/10.1016/j.mtener.2022.101024.

    Article  CAS  Google Scholar 

  95. Wei D, Tang W, Ma N, Wang Y. NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficient overall urea solution electrolysis. J Alloys Compd. 2021;874(5):159945. https://doi.org/10.1016/j.jallcom.2021.159945.

    Article  CAS  Google Scholar 

  96. Zhang X, Fang X, Zhu K, Yuan W, Jiang T, Xue H, Tian J. Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. J Power Sour. 2022;520:230882. https://doi.org/10.1016/j.jpowsour.2021.230882.

    Article  CAS  Google Scholar 

  97. Xu L, Wang X, Zhang L, Sun H, Xie X, Zhang Y, Tan B, Yuan R. Carboxyferrocene modulated Ni/Co bimetallic metal-organic framework for highly efficient electrocatalysis of urea oxidation reaction. Electrochim Acta. 2022;428:140877. https://doi.org/10.1016/j.electacta.2022.140877.

    Article  CAS  Google Scholar 

  98. Wang L, Ren L, Wang X, Feng X, Zhou J, Wang B. Multivariate MOF-templated pomegranate-like ni/c as efficient bifunctional electrocatalyst for hydrogen evolution and urea oxidation. ACS Appl Mater Interfaces. 2018;10(5):4750. https://doi.org/10.1021/acsami.7b18650.

    Article  CAS  PubMed  Google Scholar 

  99. Li M, Sun H, Yang J, Humayun M, Li L, Xu X, Xue X, Habibi-Yangjeh A, Temst K, Wang C. Mono-coordinated metallocene ligands endow metal-organic frameworks with highly efficient oxygen evolution and urea electrolysis. Chem Eng J. 2022;430:132733. https://doi.org/10.1016/j.cej.2021.132733.

    Article  CAS  Google Scholar 

  100. Xu Y, Chai X, Ren T, Yu S, Yu H, Wang Z, Li X, Wang L, Wang H. Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chem Commun. 2020;56(14):2151. https://doi.org/10.1039/c9cc09484a.

    Article  CAS  Google Scholar 

  101. Xu H, Ye K, Zhu K, Yin J, Yan J, Wang G, Cao D. Template-directed assembly of urchin-like CoSx/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis. Inorg Chem Front. 2020;7(14):2602. https://doi.org/10.1039/d0qi00408a.

    Article  CAS  Google Scholar 

  102. Zhao T, Zhong D, Tian L, Hao G, Liu G, Li J, Zhao Q. Constructing abundant phase interfaces of the sulfides/metal-organic frameworks p-p heterojunction array for efficient overall water splitting and urea electrolysis. J Colloid Interface Sci. 2023;634:630. https://doi.org/10.1016/j.jcis.2022.11.149.

    Article  CAS  PubMed  Google Scholar 

  103. Nagajyothi PC, Yoo K, Ramaraghavulu R, Shim J. Hydrothermal synthesis of MnWO4@GO composite as non-precious electrocatalyst for urea oxidation. Nanomaterials. 2021;12(1):12010085. https://doi.org/10.3390/nano12010085.

    Article  CAS  Google Scholar 

  104. Yang M, Bai Q, Ding C. NiMoO4 nanoparticles embedded in nanoporous carbon nanosheets derived from peanut shells: Efficient electrocatalysts for urea oxidation. Collid Surface A. 2020;604:125276. https://doi.org/10.1016/j.colsurfa.2020.125276.

    Article  CAS  Google Scholar 

  105. Meng L, Li L, Wang J, Fu S, Zhang Y, Li J, Xue C, Wei Y, Li G. Valence -engineered MoNi4 /MoOx@NF as a bi-functional electrocatalyst compelling for urea -assisted water splitting reaction. Electrochim Acta. 2020;350:136382. https://doi.org/10.1016/j.electacta.2020.136382.

    Article  CAS  Google Scholar 

  106. Nagajyothi PC, Ramaraghavulu R, Yoo K, Pavani K, Shim J. An inexpensive Ni-doped Co3O4 electrocatalyst for urea oxidation. Collid Surface A. 2022;635:128101. https://doi.org/10.1016/j.colsurfa.2021.128101.

    Article  CAS  Google Scholar 

  107. Sun CB, Guo MW, Siwal SS, Zhang QB. Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: cobalt doping effect and mechanism aspect. J Catal. 2020;381:454. https://doi.org/10.1016/j.jcat.2019.11.034.

    Article  CAS  Google Scholar 

  108. Chen J, Ci S, Wang G, Senthilkumar N, Zhang M, Xu Q, Wen Z. Ni(OH)2 nanosheet electrocatalyst toward alkaline urea electrolysis for energy-saving acidic hydrogen production. ChemElectroChem. 2019;6(20):5313. https://doi.org/10.1002/celc.201901401.

    Article  CAS  Google Scholar 

  109. Kashale AA, Ghule AV, Chen WP. Active edge site exposed beta-Ni(OH)2 nanosheets on stainless steel mesh as a versatile electrocatalyst for the oxidation of urea, hydrazine, and water. ChemCatChem. 2021;13(4):1165. https://doi.org/10.1002/cctc.202001528.

    Article  CAS  Google Scholar 

  110. Wang X, Zhang W, Zhang J, Zhang J, Wu Z. Co(OH)2 nanosheets array doped by Cu2+ ions with optimal electronic structure for urea-assisted electrolytic hydrogen generation. ChemElectroChem. 2021;8(10):1881. https://doi.org/10.1002/celc.202100443.

    Article  CAS  Google Scholar 

  111. Yang JH, Chen M, Xu X, Jiang S, Zhang Y, Wang Y, Li Y, Zhang J, Yang D. CuO-Ni(OH)2 nanosheets as effective electro-catalysts for urea oxidation. Appl Surf Sci. 2021;560: 150009. https://doi.org/10.1016/j.apsusc.2021.150009.

    Article  CAS  Google Scholar 

  112. Wang G, Wen Z. Self-supported bimetallic Ni-Co compound electrodes for urea- and neutralization energy-assisted electrolytic hydrogen production. Nanoscale. 2018;10(45):21087. https://doi.org/10.1039/c8nr06740f.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang C, Chen T, Zhang H, Li Z, Hao J. Hydrated-metal-halide-based deep-eutectic-solvent-mediated NiFe layered double hydroxide: an excellent electrocatalyst for urea electrolysis and water splitting. Chem Asian J. 2019;14(17):2995. https://doi.org/10.1002/asia.201900742.

    Article  CAS  PubMed  Google Scholar 

  114. Feng Y, Wang X, Huang J, Dong P, Ji J, Li J, Cao L, Feng L, Jin P, Wang C. Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chem Eng J. 2020;390:124525. https://doi.org/10.1016/j.cej.2020.124525.

    Article  CAS  Google Scholar 

  115. Yan X, Hu QT, Wang G, Zhang WD, Liu J, Li T, Gu ZG. NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. Int J Hydrog Energy. 2020;45(38):19206. https://doi.org/10.1016/j.ijhydene.2020.05.052.

    Article  CAS  Google Scholar 

  116. Liu G, Huang C, Yang Z, Su J, Zhang W. Ultrathin NiMn-LDH nanosheet structured electrocatalyst for enhanced electrocatalytic urea oxidation. Appl Catal A-gen. 2021;614:118049. https://doi.org/10.1016/j.apcata.2021.118049.

    Article  CAS  Google Scholar 

  117. Yan X, Hu QT, Liu J, Zhang WD, Gu ZG. Ultrafine-grained NiCo layered double hydroxide nanosheets with abundant active edge sites for highly enhanced electro-oxidation of urea. Electrochim Acta. 2021;368:137648. https://doi.org/10.1016/j.electacta.2020.137648.

    Article  CAS  Google Scholar 

  118. Yang Z, Zhang Y, Feng C, Wu H, Ding Y, Mei H. P doped NiCoZn LDH growth on nickel foam as an highly efficient bifunctional electrocatalyst for overall urea-water electrolysis. Int J Hydrog Energy. 2021;46(50):25321. https://doi.org/10.1016/j.ijhydene.2021.05.076.

    Article  CAS  Google Scholar 

  119. Wang Y, Liu Y, Zhang M, Liu B, Zhao Z, Yan K. One-step architecture of bifunctional petal-like oxygen-deficient NiAl-LDHs nanosheets for high-performance hybrid supercapacitors and urea oxidation. Sci China Mater. 2022;65(7):1805. https://doi.org/10.1007/s40843-021-1978-3.

    Article  Google Scholar 

  120. Lu XF, Zhang SL, Sim WL, Gao S, Lou XW. Phosphorized CoNi2S4 yolk-shell spheres for highly efficient hydrogen production via water and urea electrolysis. Angew Chem Int Ed. 2021;60(42):22885. https://doi.org/10.1002/anie.202108563.

    Article  CAS  Google Scholar 

  121. Ni S, Qu H, Xu Z, Zhu X, Xing H, Wang L, Yu J, Liu H, Chen C, Yang L. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl Catal B. 2021;299: 120638. https://doi.org/10.1016/j.apcatb.2021.120638.

    Article  CAS  Google Scholar 

  122. Wu Z, Guo X, Zhang Z, Song M, Jiao T, Zhu Y, Wang J, Liu X. Interface engineering of MoS2 for electrocatalytic performance optimization for hydrogen generation via urea electrolysis. ACS Sustain Chem Eng. 2019;7(19):16577. https://doi.org/10.1021/acssuschemeng.9b03906.

    Article  CAS  Google Scholar 

  123. Hao P, Zhu W, Li L, Tian J, Xie J, Lei F, Cui G, Zhang Y, Tang B. Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochim Acta. 2020;338:135883. https://doi.org/10.1016/j.electacta.2020.135883.

    Article  CAS  Google Scholar 

  124. Jiang Y, Gao S, Liu J, Xu G, Jia Q, Chen F, Song X. Ti-Mesh supported porous CoS2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis. Nanoscale. 2020;12(21):11573. https://doi.org/10.1039/d0nr02058c.

    Article  CAS  PubMed  Google Scholar 

  125. Wei D, Tang W, Wang Y. Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation. Int J Hydrog Energy. 2021;46(40):20950. https://doi.org/10.1016/j.ijhydene.2021.03.206.

    Article  CAS  Google Scholar 

  126. Liu C, Li F, Xue S, Lin H, Sun Y, Cao J, Chen S. Fe doped Ni3S2 nanosheet arrays for efficient and stable electrocatalytic overall urea splitting. ACS Appl Energy Mater. 2022;5(1):1183. https://doi.org/10.1021/acsaem.1c03536.

    Article  CAS  Google Scholar 

  127. Liu Z, Zhang C, Liu H, Feng L. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl Catal B. 2020;276(5):119165. https://doi.org/10.1016/j.apcatb.2020.119165.

    Article  CAS  Google Scholar 

  128. Xie H, Feng Y, He X, Zhu Y, Li Z, Liu H, Zeng S, Qian Q, Zhang G. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis. Small. 2023;19(17):2207425. https://doi.org/10.1002/smll.202207425.

    Article  CAS  Google Scholar 

  129. Wang H, Zou H, Liu Y, Liu Z, Sun W, Lin KA, Li T, Luo S. Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Sci Rep. 2021;11(1):21414. https://doi.org/10.1038/s41598-021-00776-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Singh TI, Rajeshkhanna G, Singh SB, Kshetri T, Kim NH, Lee JH. Metal-organic framework-derived Fe/Co-based bifunctional electrode for h2 production through water and urea electrolysis. Chemsuschem. 2019;12(21):4810. https://doi.org/10.1002/cssc.201902232.

    Article  CAS  PubMed  Google Scholar 

  131. Gopi S, Perumal S, Al Olayan EM, AlAmri OD, Aloufi AS, Kathiresan M, Yun K. 2D Trimetal-organic framework derived metal carbon hybrid catalyst for urea electro-oxidation and 4-nitrophenol reduction. Chemosphere. 2021;267:129243. https://doi.org/10.1016/j.chemosphere.2020.129243.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1713500), the Major Science and Technology Projects of Henan Province (No. 221100230200), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 23IRTSTHN009), the Project of Science and Technology Department of Henan Province (Nos. 232102241034 and 222102240074), the Natural Science Foundation of Suzhou University of Science and Technology (No. XKQ2020002), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 22KJB530009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang, Yong Liu, Feng-Zhang Ren or Ting-Feng Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, QX., Wang, F., Liu, Y. et al. Recent progress of two-dimensional metal-base catalysts in urea oxidation reaction. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02668-y

Keywords

Navigation