Skip to main content

Advertisement

Log in

RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Developing cost-effective electrocatalysts with high activity and stability especially at high current density is of great significance for the large-scale commercial application of electrochemical water splitting to hydrogen production but still remains challenging. Herein, we report an effective confinement pyrolysis strategy to fabricate embedded ruthenium–cobalt nanoclusters supported on N-doped porous two-dimensional carbon nanosheets (RuCo@CN). Markedly, the embedded structure can effectively prevent the migration, agglomeration, and leaching of nanoparticles, thus endowing the RuCo@CN catalyst with high stability. To be exact, high stability with up to 650 h can be achieved at high current density (− 500 and − 1000 mA·cm−2). Besides, the RuCo@CN catalysts also exhibit highly reactive with low overpotentials of only 11 mV at − 10 mA·cm−2. Density functional theory calculations reveal that the introduction of cobalt reduces the decomposition barrier of H2O for RuCo@CN alloy, thus promoting hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data produced are available on the reasonable request from the corresponding authors.

References

  1. Sanati S, Morsali A, García H. First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ Sci. 2022;15:3119.

    Article  CAS  Google Scholar 

  2. Zhang JC, Chen GB, Liu QC, Fan C, Sun D, Tang Y, Sun H, Feng X. Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew Chem Int Ed. 2022;9:486.

    Google Scholar 

  3. Yang M, Zhang S, Wang T, Shi B, Liu J, Tang Y, Xu Z, Sarwar MT, Tang A, Yang H. Multiple interface Ni(PO3)2-CoP4/CoMoO4 nanorods for highly efficient hydrogen evolution in alkaline water/seawater electrolysis. ACS Sustain Chem Eng. 2022;10:12423.

    Article  CAS  Google Scholar 

  4. Hou X, Zhou H, Zhao M, Cai Y, Wei Q. MoS2 nanoplates embedded in Co-N-doped carbon nanocages as efficient catalyst for HER and OER. ACS Sustain Chem Eng. 2020;8:5724.

    Article  CAS  Google Scholar 

  5. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44:5148.

    Article  CAS  PubMed  Google Scholar 

  6. Xu Z, Yeh CL, Chen JL, Lin JT, Ho KC, Lin RY-Y. Metal-organic framework-derived 2D NiCoP nanoflakes from layered double hydroxide nanosheets for efficient electrocatalytic water splitting at high current densities. ACS Sustain Chem Eng. 2022;10:11577.

    Article  CAS  Google Scholar 

  7. Danilov FI, Tsurkan AV, Vasil’eva EA, Protsenko VS. Electrocatalytic activity of composite Fe/TiO2 electrodeposits for hydrogen evolution reaction in alkaline solutions. Int J Hydrogen Energy. 2016;41:7363.

    Article  CAS  Google Scholar 

  8. Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale. 2014;6:13440.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Li R, Chu B, Liu J, Wang F, Chen Z, Pang Q, Li B, Fan M, Dong L. Interfacial coupling and defect-induced dual effects enabling superhydrophilic Ni2P/V2O3–x heteronanosheets to accelerate alkaline hydrogen evolution reaction. ACS Sustain Chem Eng. 2022;10:12262.

    Article  CAS  Google Scholar 

  10. Wu C, Yang Y, Dong D, Zhang Y, Li J. In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small. 2017;13:1602873.

    Article  Google Scholar 

  11. Tung CW, Kuo TR, Huang YP, Chu YC, Hou CH, Li Y, Suen NT, Han J, Chen HM. Dynamic Co(µ-O)2Ru moiety endowed efficiently catalytic hydrogen evolution. Adv Energy Mater. 2022;12:2200079.

    Article  CAS  Google Scholar 

  12. Huang H, Jung H, Park CY, Kim S, Lee A, Jun H, Choi J, Han JW, Lee J. Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Appl Catal B. 2022;315: 121554.

    Article  CAS  Google Scholar 

  13. Madhu R, Jayan R, Karmakar A, Selvasundarasekar SS, Kumaravel S, Bera K, Nagappan S, Dhandapani HN, Islam MM, Kundu S. Rationally constructing chalcogenide-hydroxide heterostructures with amendment of electronic structure for overall water-splitting reaction. ACS Sustain Chem Eng. 2022;10:11299.

    Article  CAS  Google Scholar 

  14. Jian J, Kang H, Qiao X, Cui K, Liu Y, Li Y, Qin W, Wu X. Cobalt and aluminum co-optimized 1T phase MoS2 with rich edges for robust hydrogen evolution activity. ACS Sustain Chem Eng. 2022;10:10203.

    Article  CAS  Google Scholar 

  15. Song C, Zhao Z, Sun X, Zhou Y, Wang Y, Wang D. In situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on copper foam for efficient HER electrocatalysis. Small. 2019;15:1804268.

    Article  Google Scholar 

  16. Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci. 2016;7:3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tiwari JN, Harzandi AM, Ha M, Sultan S, Myung CW, Park HJ, Kim DY, Thangavel P, Singh AN, Sharma P, Chandrasekaran SS, Salehnia F, Jang JW, Shin HS, Lee Z, Kim KS. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv Energy Mater. 2019;9:1970101.

    Article  Google Scholar 

  18. Wu W, Wu Y, Zheng D, Wang K, Tang Z. Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at All-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochim Acta. 2019;320: 134568.

    Article  CAS  Google Scholar 

  19. He Q, Zhou Y, Shou H, Wang X, Zhang P, Xu W, Qiao S, Wu C, Liu H, Liu D, Chen S, Long R, Qi Z, Wu X, Song L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv Mater. 2022;34:2110604.

    Article  CAS  Google Scholar 

  20. Liu ZL, Li BQ, Feng YJ, Jia D, Li C, Zhou Y. N-doped sp2/sp3 carbon derived from carbon dots to boost the performance of ruthenium for efficient hydrogen evolution reaction. Small Methods. 2022;6:2200637.

    Article  CAS  Google Scholar 

  21. Zhu J, Cai L, Tu Y, Zhang L, Zhang W. Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. J Mater Chem A. 2022;10:15370.

    Article  CAS  Google Scholar 

  22. Liu Y, Wang Q, Zhang J, Ding J, Cheng Y, Wang T, Li J, Hu F, Yang HB, Liu B. Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Adv Energy Mater. 2022;12:2200928.

    Article  CAS  Google Scholar 

  23. Wang J, Wei Z, Mao S, Li H, Wang Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ Sci. 2018;11:800.

    Article  CAS  Google Scholar 

  24. Li Y, Zhang LA, Qin Y, Chu F, Kong Y, Tao Y, Li Y, Bu Y, Ding D, Liu M. Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 2018;8:5714.

    Article  CAS  Google Scholar 

  25. Liu Y, Yang Y, Peng Z, Liu Z, Chen Z, Shang L, Lu S, Zhang T. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy. 2019;65: 104023.

    Article  CAS  Google Scholar 

  26. Yu J, Guo Y, She S, Miao S, Ni M, Zhou W, Liu M, Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30:1800047.

    Article  Google Scholar 

  27. Li P, Duan X, Wang S, Zheng L, Li Y, Duan H, Kuang Y, Sun X. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small. 2019;15:1904043.

    Article  CAS  Google Scholar 

  28. Zhao J, Pan T, Sun J, Gao H, Guo J. Cu-Ru nanoalloys on carbon black for efficient production of hydrogen in neutral and alkaline conditions. Mater Lett. 2020;262: 127041.

    Article  CAS  Google Scholar 

  29. Liu G, Zhou W, Chen B, Zhang Q, Cui X, Li B, Lai Z, Chen Y, Zhang Z, Gu L, Zhang H. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy. 2019;66: 104173.

    Article  CAS  Google Scholar 

  30. Zhang Z, Li P, Wang Q, Feng Q, Tao Y, Xu J, Jiang C, Lu X, Fan J, Gu M, Li H, Wang H. Mo modulation effect on the hydrogen binding energy of hexagonal-close-packed Ru for hydrogen evolution. J Mater Chem A. 2019;7:2780.

    Article  CAS  Google Scholar 

  31. Yang Y, Wu D, Li R, Rao P, Li J, Deng P, Luo J, Huang W, Chen Q, Kang Z, Shen Y, Tian X. Engineering the strong metal support interaction of titanium nitride and ruthenium nanorods for effective hydrogen evolution reaction. Appl Catal B. 2022;317: 121796.

    Article  CAS  Google Scholar 

  32. Mao J, He CT, Pei J, Chen W, He D, He Y, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat Commun. 2018;9:4958.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun. 2017;8:14969.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Zhang M, Li H, Chen J, Yi L, Shao P, Xu CY, Wen Z. Nitrogen-doped graphite encapsulating RuCo nanoparticles toward high-activity catalysis of water oxidation and reduction. Chem Eng J. 2021;422: 130077.

    Article  CAS  Google Scholar 

  35. Yoo JM, Shin H, Chung DY, Sung YE. Carbon shell on active nanocatalyst for stable electrocatalysis. ACC Chem Res. 2022;55:1278.

    Article  CAS  PubMed  Google Scholar 

  36. Su F, Lee FY, Lv L, Liu J, Tian XN, Zhao XS. Sandwiched ruthenium/carbon nanostructures for highly active heterogeneous hydrogenation. Adv Funct Mater. 2007;17:1926.

    Article  CAS  Google Scholar 

  37. Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S. An efficient and reusable embedded ru catalyst for the hydrogenolysis of levulinic acid to gamma-valerolactone. Chemsuschem. 2017;10:1720.

    Article  CAS  PubMed  Google Scholar 

  38. Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS. Activating cobalt nanoparticles via the mott-schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J Am Chem Soc. 2017;139:811.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao SZ. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc. 2017;139:3336.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang F, Zhu Y, Chen Y, Lu Y, Lin Q, Zhang L, Tao S, Zhang X, Wang H. RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. J Mater Chem A. 2020;8:12810.

    Article  CAS  Google Scholar 

  41. Zhang J, Chen G, Liu Q, Fan C, Sun D, Tang Y, Sun H, Feng X. Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew Chem Int Ed Engl. 2022;61:202209486.

    Article  Google Scholar 

  42. Yu P, Wang F, Shifa TA, Zhan X, Lou X, Xia F, He J. Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy. 2019;58:244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. D5000220257, D5000220443), and the National Natural Science Foundation of China (No. 22002120), the Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-msxmX0750), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110507), the Key Research and Development Program of Shaanxi (No. 2023-YBGY-322).

Author information

Authors and Affiliations

Authors

Contributions

YLC and HPZ conceived the presented idea. JHW carried out catalyst synthesis, characterization studies, and wrote the article. TSW carried out all the DFT calculations. JHW, SWY, FBM, YKZ, ZYX, DC, HDS, SNZ, and KZ carried out the catalytic experiments. QYZ provided funding acquisition. YLC, TSW, and HPZ helped with article modification. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding authors

Correspondence to Yue-Ling Cao, Tian-Shuai Wang or He-Peng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Yang, SW., Ma, FB. et al. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten 6, 114–123 (2024). https://doi.org/10.1007/s42864-023-00223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00223-3

Keywords

Navigation