Skip to main content

Advertisement

Log in

Concurrent Deposition and Exfoliation of Nickel Hydroxide Nanoflakes Using Liquid Crystal Template and Their Activity for Urea Electrooxidation in Alkaline Medium

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Nickel hydroxide nanoflakes (Ni(OH)2-NF) were prepared by chemical deposition and in situ exfoliation of nickel hydroxide layers confined in the aqueous domain of the liquid crystalline hexagonal template of Brij®78 surfactant. Using excess of sodium borohydride as a reducing agent generates concurrent excessive dynamic hydrogen bubbles which exfoliated and fragmented the nickel hydroxide layers precipitated within the soft hexagonal template. The physicochemical characterizations of Ni(OH)2-NF by using surface area analyser, X-ray diffraction (XRD), XPS and transmission electron microscope (TEM) showed the formation of α-Ni(OH)2 nanoflakes with thickness of 2–3 nm and have about 450 m2 g−1 surface area which is 20 times higher than that for bare nickel (bare-Ni) deposited without surfactant template. The electrocatalytic activity of the Ni(OH)2-NF catalyst for urea electrolysis was studied by cyclic voltammetry and chronoamperometry techniques. The Ni(OH)2-NF has shown a superior activity for the electrochemical oxidation of urea in alkaline solution and exhibits more than tenfold increase in activity in comparison with the bare-Ni deposit. The enhancement of urea electrooxidation activity was related to the superficial enhancement in the electroactive surface area of Ni(OH)2-NF. This new approach of deposition and in situ exfoliation by using liquid crystal template and hydrogen bubbles offers a new platform to nanostructuring wide range of catalysts with better catalytic performance.

Nickel hydroxide nanoflakes (Ni(OH)2-NF) catalyst for the electrochemical oxidation of urea in alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. R. Rostrup-Nielsen, J. Sehested, J. K. Norskov, Hydrogen and Syngas by Steam Reforming, (Academic Press, 2002).

  2. S. Dunn, Int J Hydrog Energy 27, 235-264 (2002)

  3. C. Wu, L. Wang, P. T. Willians, J. Shi, J. Huang, Appl. Catal. B Environ. 108, 6-13 (2011).

  4. B. K. Boggs, R. L. King, G. G. Botte, Chem. Commun., 4859-4861 (2009).

  5. W. Yan, D. Wang, G. G. Botte, Electrochim. Acta 61, 25-30 (2012).

  6. H. J. Bradley, Water Research 39, 2245-2252 (2005)

  7. C. C. Jara, S. Di Giulio, D. Fino, P. Spinelli, J Appl. Electrochem. 38, 915-922 (2008).

  8. A. N. Rollinson, J. Jones, V. Dupont, M. V. Twigg, Energy Environ. Sci. 4, 1216-1224 (2011).

  9. R. Y. Ji, D. S. Chan, J. J. Jow, M. S. Wu, Electrochem. Commun. 29, 21-24 (2013).

  10. A. Doner, E. Telli, G. Kardas, J Power Sources 205, 71-79 (2012).

  11. T. R. Ling, K. T. Lien, J. J. Jow, T. Y. Lin, Electroanalysis 21, 2213-2219 (2009).

  12. D. Wang, W. Yan, G. G. Botte, Electrochem. Commun. 13, 1135-1138 (2011).

  13. A. A. El-Shafei, J. Electroanal. Chem. 471, 89-95 (1999).

  14. A. T. Miller, B. L. Hassler, G. G. Botte, J. Appl. Electrochem. 42, 925-934 (2012).

  15. A. Chen, P. H. Hindle, Chem. Rev. 110, 3767-3804 (2010).

  16. A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ Sci 3, 82 (2010)

  17. J. Liu, X. W. Liu, Adv. Mater. 24, 4097-4111 (2012).

  18. S. Guo, S. Dong, Chem. Soc. Rev. 40, 2644-2672 (2011).

  19. Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, Y. Li, Sci. Report 4, 5787-7 (2014).

  20. S. Ida, D. Shiga, M. Koinuma, Y. Matsumoto, J. Am. Chem. Soc. 130, 14038-9 (2008)

  21. C. Nethravathi, N. Ravishankar, C. Shivakumara, M. Rajamathi, J. Power Sources 172, 970-974 (2007).

  22. F. Song, X. Hu, Nature Commun. 5, 4477-9 (2014).

  23. H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nature Commun. 6, 7261-8 (2015).

  24. P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys. 4, 3835-3842 (2002).

  25. P. A. Nelson, J. M. Elliott, G. S. Attard, J. R. Owen, Chem. Mater. 14, 524–529 (2002).

  26. Y. Yamauchi, T. Yokoshima, H. Mukaibo, M. Tezuka, T. Shigeno, T. Momma, T. Osaka, K. Kuroda, Chem. Lett. 33, 542-543 (2004).

  27. Y. Yamauchi, T. Momma, T. Yokoshima, K. Kuroda, T. Osaka, J. Mater. Chem. 15, 1987-1994 (2005).

  28. B. Li, M. Ai, Z. Xu, Chem. Commun. 46, 6267-6269 (2010).

  29. M. A. Ghanem, A. M. Al-Mayouf, J. P. Singh, T. Abiti, F. Marken, J. Electrochem. Soc. 162, H453-H459 (2015).

  30. M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. S. C. Smart, Surf. Interface Anal. 41, 324–332 (2009).

  31. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys. 14, 2434-2442 (2012).

  32. J. W. Lee, T. Ahn, D. Soundararajan, J. M. Koc, J. Kim, Chem. Commun. 47, 6305-6307 (2011).

  33. D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Proc. R. Soc. A 471, 20140792 -65 (2015).

  34. Z. Q. Liu, K. Xiao, Q. Z. Xu, N. Li, Y. Z. Su, H. J. Wang, S. Chen, RSC Adv. 4, 43724380 (2013).

  35. Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, J. Mater. Chem. A 2, 13845-13853 (2014).

  36. C. M. Zhao, X. Wang, S. M. Wang, Y. Y. Wang, Y. X. Zhao, W. T. Zheng, Int. J. Hydrog. Energy 37, 11846-11852 (2012).

  37. Z. Q. Liu, Q. Z. Xu, J. Y. Wang, N. Li, S. H. Guo, Y. Z. Su, H. J. Wang, J. H. Zhang, S. Chen, Int. J. Hydrogen Energy 38, 6657-6662 (2013).

  38. IUPAC Recommendations, Pure Appl. Chem. 57, 603-619 (1985).

  39. M. A. Abdel Rahim, R. M. Abdel Hameed, M. W. Khalil, J. Power Sources 134, 160-169 (2004).

  40. M. Jafarian, M. Babaee, F. Gobal, M. G. Mahjani, J. Electroanal. Chem. 652, 8-12 (2011).

  41. D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, J. Power Sources 217, 498-502 (2012).

  42. W. Yan, D. Wang, L. A. Diaz, G. G. Botte, Electrochim. Acta 134, 266-271 (2014).

  43. W. Yan, D. Wang, G. G. Botte, Appl. Catal. B Environ. 127, 221-226 (2012).

  44. V. Vedharathinam, G. G. Botte, Electrochim. Acta 108, 660-665 (2013).

  45. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. G. Mahjani, Int. J. Hydrog .Energy. 33, 4367-4376 (2008).

  46. Q. F. Yi, W. Huang, W. Q. Yu, L. Li, X. P. Liu, Electroanalysis 20, 2016-2022 (2008).

  47. V. Vedharathinam, G. G. Botte, Electrochim. Acta 81, 292-300 (2012).

  48. S. Majdi, A. Jabbari, H. Heli, J. Solid State Electrochem. 11, 601-607 (2007).

  49. H. Heli, M. Jafarian, M. G. Mahjani, F. Gobal, Electrochim. Acta 49, 4999-5006 (2004).

  50. M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, J Solid State Electrochem. 13, 1171-1179 (2009).

  51. D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, Electrochim. Acta 89, 732-736 (2013).

  52. M.-S. Wu, R.-Y. Ji, Y.-R. Zheng, Electrochim. Acta 144, 194-199 (2014).

  53. M.-S. Wu, G.-W. Lin, R.-S. Yang, J. Power Sources 272, 711-718 (2014).

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no RG-1437-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Ghanem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanem, M.A., Al-Mayouf, A.M., Singh, J.P. et al. Concurrent Deposition and Exfoliation of Nickel Hydroxide Nanoflakes Using Liquid Crystal Template and Their Activity for Urea Electrooxidation in Alkaline Medium. Electrocatalysis 8, 16–26 (2017). https://doi.org/10.1007/s12678-016-0336-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0336-8

Keywords

Navigation