Skip to main content

Advertisement

Log in

Sheeted NiCo Double Phosphate In Situ Grown on Nickel Foam Toward Bifunctional Water and Urea Oxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Binder-free nickel–cobalt phosphate (NiCoPO) micro flakes are evenly grown on the nickel foam (NF) by a simple hydrothermal method, which can act as a highly efficient bifunctional electrocatalyst (NiCoPO/NF) for both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). NiCoPO/NF presents the relatively prominent OER and UOR activities with ultralow potentials of 1.51 V and 1.34 V (vs. reversible hydrogen electrode) to reach the current density of 100 mA cm−2, respectively. The outstanding UOR and OER performance of NiCoPO/NF might be attributed to the fact that the successful incorporation of oxygen atoms into Ni/Co phosphate is beneficial for the oxidation of metal atoms at high overpotential. In addition, NF can improve the electrical conductivity to accelerate the electron transfer from the electrode to the catalyst. Additionally, in the alkaline solution (1 M KOH), NiCoPO/NF shows excellent durability and stability after the consecutive OER and UOR tests for 48 h. The design of NiCoPO/NF would pave the way to construct more efficient bifunctional electrodes for electrocatalytic water splitting with or without urea in alkaline solution, which provides a novel technological platform for the conversion of human waste into the sustainable energy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014). https://doi.org/10.1039/C4EE01760A

    Article  CAS  Google Scholar 

  2. C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Local charge distribution engineered by schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 8, 1801775 (2018). https://doi.org/10.1002/aenm.201801775

    Article  CAS  Google Scholar 

  3. C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen, X. Wang, Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv. Funct. Mater. 30, 2000556 (2020). https://doi.org/10.1002/adfm.202000556

    Article  CAS  Google Scholar 

  4. C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56, 842–846 (2017). https://doi.org/10.1002/anie.201608899

    Article  CAS  Google Scholar 

  5. H. Dong, M. Xiao, S. Yu, H. Wu, Y. Wang, J. Sun, G. Chen, C. Li, Insight into the activity and stability of RhxP nano-species supported on g-C3N4 for photocatalytic H2 production. ACS Catal. 10, 458–462 (2020). https://doi.org/10.1021/acscatal.9b04671

    Article  CAS  Google Scholar 

  6. X. Fan, Y. Liu, S. Chen, J. Shi, J. Wang, A. Fan, W. Zan, S. Li, X.M. Zhang, Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 9, 1809 (2018). https://doi.org/10.1038/s41467-018-04248-y

    Article  CAS  Google Scholar 

  7. C.-Q. Li, S.-S. Yi, D.-L. Chen, Y. Liu, Y.-J. Li, S.-Y. Lu, X.-Z. Yue, Z.-Y. Liu, Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production. J. Mater. Chem. A 7, 17974–17980 (2019). https://doi.org/10.1039/c9ta03701b

    Article  CAS  Google Scholar 

  8. J. Yu, Q. Li, Y. Li, C.-Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727

    Article  CAS  Google Scholar 

  9. T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal−organic framework derived hybrid Co3O4 -carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014). https://doi.org/10.1021/ja5082553

    Article  CAS  Google Scholar 

  10. F. Song, K. Schenk, X. Hu, A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy Environ. Sci. 9, 473–477 (2016). https://doi.org/10.1039/c5ee03453a

    Article  CAS  Google Scholar 

  11. S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R.K. Selvan, Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. 8, 1800555 (2018). https://doi.org/10.1002/aenm.201800555

    Article  CAS  Google Scholar 

  12. Z. Sun, M. Yuan, H. Yang, L. Lin, H. Jiang, S. Ge, H. Li, G. Sun, S. Ma, X. Yang, 3D porous amorphous γ-CrOOH on Ni foam as bifunctional electrocatalyst for overall water splitting. Inorg. Chem. 58, 4014–4018 (2019). https://doi.org/10.1021/acs.inorgchem.9b00112

    Article  CAS  Google Scholar 

  13. Z. Sun, Y. Wang, L. Lin, M. Yuan, H. Jiang, R. Long, S. Ge, C. Nan, H. Li, G. Sun, X. Yang, Engineering borate modified NiFe layer double hydroxide nanoarrays as ‘“hydroxyl ions hungry”’electrocatalysts for enhanced oxygen evolution. Chem. Commun. 55, 1334–1337 (2019). https://doi.org/10.1039/c8cc09893j

    Article  CAS  Google Scholar 

  14. Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890‒1897 (2018). https://doi.org/10.1039/c8ee00521d

  15. Y. Zhang, Y. Qiu, Y. Wang, B. Li, Y. Zhang, Z. Ma, S. Liu, Coaxial Ni−S@N-doped carbon nanofibers derived hierarchical electrodes for efficient H2 production via urea electrolysis. ACS Appl. Mater. Interfaces 13, 3937–3948 (2021). https://doi.org/10.1021/acsami.0c19117

    Article  CAS  Google Scholar 

  16. S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhofer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew. Chem. Int. Ed. 57, 11460–11464 (2018). https://doi.org/10.1002/anie.201806298

    Article  CAS  Google Scholar 

  17. G. Dodekatos, S. Schünemann, H. Tüysüz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018). https://doi.org/10.1021/acscatal.8b01317

    Article  CAS  Google Scholar 

  18. W. Song, M. Xu, X. Teng, Y. Niu, S. Gong, X. Liu, X. He, Z. Chen, Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis. Nanoscale 13, 1680–1688 (2021). https://doi.org/10.1039/d0nr08395j

    Article  CAS  Google Scholar 

  19. L. Lv, Z. Li, H. Wan, C. Wang, Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays. J. Colloid Interface Sci. 592, 13–21 (2021). https://doi.org/10.1016/j.jcis.2021.02.038

    Article  CAS  Google Scholar 

  20. Y. Jiang, S. Gao, G. Xu, X. Song, Porous and amorphous cobalt hydroxysulfide core-shell nanoneedles on Ti-mesh as a bifunctional electrocatalyst for energy-efficient hydrogen production via urea electrolysis. J. Mater. Chem. A 9, 5664–5674 (2021). https://doi.org/10.1039/d0ta08475a

    Article  CAS  Google Scholar 

  21. H. Yang, M. Yuan, Z. Sun, D. Wang, L. Lin, H. Li, G. Sun, In situ construction of a Mn2+-doped Ni3S2 electrode with highly enhanced urea oxidation reaction performance. ACS Sustainable Chem. Eng. 8, 8348–8355 (2020). https://doi.org/10.1021/acssuschemeng.0c02160

    Article  CAS  Google Scholar 

  22. W. Wu, Z. Wu, S. Tao, Urea-based fuel cells and electrocatalysts for urea oxidation. Energy Technol. 4, 1329–1337 (2016). https://doi.org/10.1002/ente.201600185

    Article  CAS  Google Scholar 

  23. L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis. J. Mater. Chem. A 8, 18055–18063 (2020). https://doi.org/10.1039/d0ta04944a

    Article  CAS  Google Scholar 

  24. J. Zhang, F. Xing, H. Zhang, Y. Huang, Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation. Dalton Trans. 49, 13962–13969 (2020). https://doi.org/10.1039/d0dt02459g

    Article  CAS  Google Scholar 

  25. T. Wang, H. Wu, C. Feng, L. Zhang, J. Zhang, MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis. J. Mater. Chem. A 8, 18106–18116 (2020). https://doi.org/10.1039/d0ta06030e

    Article  CAS  Google Scholar 

  26. F. Guo, K. Ye, K. Cheng, G. Wang, D. Cao, Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium. J. Power Sources 278, 562–568 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.125

    Article  CAS  Google Scholar 

  27. J. Wang, Z. Zhao, C. Shen, H. Liu, X. Pang, M. Gao, J. Mu, F. Cao, G. Li, Ni/NiO heterostructures encapsulated in oxygen-doped graphene as multifunctional electrocatalysts for the HER, UOR and HMF oxidation reaction. Catal. Sci. Technol. 11, 2480–2490 (2021). https://doi.org/10.1039/d0cy02333g

    Article  CAS  Google Scholar 

  28. P. Babar, A. Lokhande, V. Karade, I.J. Lee, D. Lee, S. Pawar, J.H. Kim, Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid Interface Sci. 557, 10–17 (2019). https://doi.org/10.1016/j.jcis.2019.09.012

    Article  CAS  Google Scholar 

  29. L. Lei, D. Huang, C. Zhou, S. Chen, X. Yan, Z. Li, W. Wang, Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coordin. Chem. Rev. 408, 213177 (2020). https://doi.org/10.1016/j.ccr.2019.213177

    Article  CAS  Google Scholar 

  30. Z. Sun, M. Yuan, K. Shi, Y. Liu, D. Wang, C. Nan, H. Li, G. Sun, X. Yang, Engineering lithium ions embedded in NiFe layered double hydroxide lattices to activate laminated Ni2+ sites as high-efficiency oxygen evolution reaction catalysts. Chem. Eur. J. 26, 7244–7249 (2020). https://doi.org/10.1002/chem.201905844

    Article  CAS  Google Scholar 

  31. Q, He, Y, Wan, H. Jiang, Z. Pan, C. Wu, M. Wang, X. Wu, B. Ye, P. M. Ajayan, L. Song, Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Let. 3, 1373‒1380 (2018). https://doi.org/10.1021/acsenergylett.8b00515

  32. H. Liu, S. Zhu, Z. Cui, Z. Li, S. Wu, Y. Liang, Ni2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale 13, 1759–1769 (2021). https://doi.org/10.1039/d0nr08025j

    Article  CAS  Google Scholar 

  33. Z. Sun, M. Yuan, L. Lin, H. Yang, H. Li, G. Sun, X. Yang, S. Ma, Needle grass-like cobalt hydrogen phosphate on Ni foam as an effective and stable electrocatalyst for the oxygen evolution reaction. Chem. Commun. 55, 9729–9732 (2019). https://doi.org/10.1039/c9cc03929e

    Article  CAS  Google Scholar 

  34. J.-H. Yang, X. Song, X. Zhao, Y. Wang, Y. Yang, L. Gao, Nickel phosphate materials regulated by doping cobalt for urea and methanol electro-oxidation. Int. J. Hydrogen Energy 44, 16305–16314 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.016

    Article  CAS  Google Scholar 

  35. Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 56, 411–419 (2019). https://doi.org/10.1016/j.nanoen.2018.11.034

    Article  CAS  Google Scholar 

  36. M. Pramanik, C. Li, M. Imura, V. Malgras, Y.-M. Kang, Y. Yamauchi, Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts. Small 12, 1709‒1715 (2016). https://doi.org/10.1002/smll.201503187

  37. C. Wang, W. Chen, D. Yuan, S. Qian, D. Cai, J. Jiang, S. Zhang, Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 69, 104453 (2020). https://doi.org/10.1016/j.nanoen.2020.104453

    Article  CAS  Google Scholar 

  38. B. Ma, Z. Yang, Y. Chen, Z. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 12, 375–380 (2018). https://doi.org/10.1007/s12274-018-2226-2

    Article  CAS  Google Scholar 

  39. Y. Liu, D. Yang, Z. Liu, J.-H. Yang, Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction. J. Power Sources 461, 228165 (2020). https://doi.org/10.1016/j.jpowsour.2020.228165

    Article  CAS  Google Scholar 

  40. G. Liu, R. Yao, Y. Zhao, M. Wang, N. Li, Y. Li, X. Bo, J. Li, C. Zhao, Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale 10, 3997–4003 (2018). https://doi.org/10.1039/c7nR09446a

    Article  CAS  Google Scholar 

  41. D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A.M. Asiri, Q. Wei, X. Sun, Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 30, 1705366 (2018). https://doi.org/10.1002/adma.201705366

    Article  CAS  Google Scholar 

  42. N. Padmanathan, H. Shao, K.M. Razeeb, Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl. Mater. Interfaces 10, 8599–8610 (2018). https://doi.org/10.1021/acsami.7b17187

    Article  CAS  Google Scholar 

  43. H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflflakes on nickel foam. ACS Appl. Mater. Interfaces 8, 28592‒28598 (2016). https://doi.org/10.1021/acsami.6b08354

  44. H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2, 569–578 (2018). https://doi.org/10.1021/acsaem.8b01612

    Article  CAS  Google Scholar 

  45. J. Zhang, Y. Yang, Z. Zhang, X. Xu, X. Wang, Rapid synthesis of mesoporous NixCo3-x(PO4)2 hollow shells showing enhanced electrocatalytic and supercapacitor performance. J. Mater. Chem. A 2, 20182‒20188 (2014). https://doi.org/10.1039/c4ta05278a

  46. T. Rohani, S.Z. Mohammadi, A. Beheshti-Marnani, H. Taghizadeh, Cobalt nanoparticles introduced to activated carbon, CoNP/AC, as an effective electrocatalyst for oxidation and determination of methanol and ethanol. Int. J. Hydrogen Energy 47, 6837–6847 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.063

    Article  CAS  Google Scholar 

  47. R.K. Singh, A. Schechter, Electrochemical investigation of urea oxidation reaction on β-Ni(OH)2 and Ni/Ni(OH)2. Electrochim Acta 278, 405–411 (2018). https://doi.org/10.1016/j.electacta.2018.05.049

    Article  CAS  Google Scholar 

  48. M. Zeng, J. Wu, Z. Li, H. Wu, J. Wang, H. Wang, L. He, X. Yang, Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustainable Chem. Eng. 7, 4777–4783 (2019). https://doi.org/10.1021/acssuschemeng.8b04953

    Article  CAS  Google Scholar 

  49. W.L. McClennan, S.A. Rufh, J.A.M. Lummiss, D.E. Fogg, A general decomposition pathway for phosphine-stabilized metathesis catalysts: lewis donors accelerate methylidene abstraction. J. Am. Chem. Soc. 138, 14668–14677 (2016). https://doi.org/10.1021/jacs.6b08372

    Article  CAS  Google Scholar 

  50. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 5, 6874–6878 (2015). https://doi.org/10.1021/acscatal.5b02076

    Article  CAS  Google Scholar 

  51. Y. Zhao, G. Fan, L. Yang, Y. Lin, F. Li, Assembling Ni-Co phosphides/carbon hollow nanocages and nanosheets with carbon nanotubes into a hierarchical necklace-like nanohybrid for electrocatalytic oxygen evolution reaction. Nanoscale 10, 13555–13564 (2018). https://doi.org/10.1039/c8nr04776f

    Article  CAS  Google Scholar 

  52. P. He, X.-Y. Yu, X.W. Lou, Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Ed. 56, 3897–3900 (2017). https://doi.org/10.1002/anie.201612635

    Article  CAS  Google Scholar 

  53. N. Senthilkumar, G. Gnana kumar, A. Manthiram, 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv. Energy Mater. 8, 1702207 (2018). https://doi.org/10.1002/aenm.201702207

  54. L. Sha, K. Ye, G. Wang, J. Shao, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, Rational design of NiCo2S4 nanowire arrays on nickle foam as highly efficient and durable electrocatalysts toward urea electrooxidation. Chem. Engin. J. 359, 1652–1658 (2019). https://doi.org/10.1016/j.cej.2018.10.225

    Article  CAS  Google Scholar 

  55. D.A. Daramola, D. Singh, G.G. Botte, Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. J. Phys. Chem. A 114, 11513–11521 (2010). https://doi.org/10.1021/jp105159t

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Leading Talents of Science and Technology Innovation in Central China (grant numbers: 214200510006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyi Liu, Jing-he Yang or Meng Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3042 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, Y., Yi, W. et al. Sheeted NiCo Double Phosphate In Situ Grown on Nickel Foam Toward Bifunctional Water and Urea Oxidation. Electrocatalysis 14, 247–258 (2023). https://doi.org/10.1007/s12678-022-00793-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00793-9

Keywords

Navigation