Skip to main content
Log in

Emerging WS2/WSe2@graphene nanocomposites: synthesis and electrochemical energy storage applications

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In recent years, tungsten disulfide (WS2) and tungsten selenide (WSe2) have emerged as favorable electrode materials because of their high theoretical capacity, large interlayer spacing, and high chemical activity; nevertheless, they have relatively low electronic conductivity and undergo large volume expansion during cycling, which greatly hinder them in practical applications. These drawbacks are addressed by combining a superior type of carbon material, graphene, with WS2 and WSe2 to form a WS2/WSe2@graphene nanocomposites. These materials have received considerable attention in electro-chemical energy storage applications such as lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and supercapacitors. Considering the rapidly growing research enthusiasm on this topic over the past several years, here the recent progress of WS2/WSe2@graphene nanocomposites in electrochemical energy storage applications is summarized. Furthermore, various methods for the synthesis of WS2/WSe2@graphene nanocomposites are reported and the relationships among these methods, nano/microstructures, and electrochemical performance are systematically summarized and discussed. In addition, the challenges and prospects for the future study and application of WS2/WSe2@graphene nanocomposites in electrochemical energy storage applications are proposed.

Graphical Abstract

摘要

近年来, 二硫化钨 (WS2) 和二硒化钨 (WSe2) 因其理论容量高、层间间距大、化学活性高等特点成为很有前景的电极材料; 然而, 它们的电子导电性相对较低, 并且在循环过程中会经历较大的体积膨胀, 这极大地阻碍了它们的实际应用。通过将新兴的碳材料石墨烯与WS2和WSe2相结合以形成WS2/WSe2@graphene纳米复合材料可以有效解决上述问题。这些材料在锂离子电池、钠离子电池和超级电容器等电化学储能应用中受到了极大的关注。本文总结了近年来WS2/WSe2@graphene纳米复合材料在电化学储能应用中的最新研究进展。此外, 本文还概述了WS2/WSe2@graphene纳米复合材料的合成方法, 并且系统地总结和讨论了这些方法、材料的纳米/微观结构和其电化学性能之间的关系。此外, 本文还提出了若干WS2/WSe2@graphene纳米复合材料未来在电化学储能研究和应用中的将会面临的挑战及展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [14]. Copyright 2016, American Chemical Society. c Schematic diagram of preparation of RGO/WS2 composite. Reproduced with permission from Ref. [59]. Copyright 2019, American Chemical Society. d Schematic diagram of fabrication procedure and crystalline features of WS2@Gs composite; e SEM image of WS2@Gs composite. Reproduced with permission from Ref. [51]. Copyright 2019, Elsevier. f Schematic illustration of procedure of formation of 3D WS2-RGO microsphere; g field-emission scanning electron microscopy (FESEM) image of WS2-3D RGO obtained by a sulfurization temperature of 400 °C. Reproduced with permission from Ref. [62]. Copyright 2015, Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [53]. Copyright 2015, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [8]. Copyright 2015, Royal Society of Chemistry. c Schematic diagram of synthetic processes of NG@WS2@Hs-RGO composite; d cycling performances of NG@WS2@Hs-RGO anode at a 1000 mA·g−1. Reproduced with permission from Ref. [77]. Copyright 2018, Elsevier

Fig. 5

Reproduced with permission from Ref. [86]. Copyright 2014, Royal Society of Chemistry. c Schematic illustration showing preparation of WS2/RGO Nano-HC; d cycling performance of WS2 nanowire microporous spheres (WS2 Nano-MS) and WS2/RGO Nano-HC at 100 mA·g−1. Reproduced with permission from Ref. [7]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref. [85]. Copyright 2020, Elsevier. g Schematic illustration of electrostatic spray deposition approach to prepare 3D porous interconnected WS2/C nanocomposite; h rate performance of annealed 3D WS2/C nanocomposites for sodium storage. Reproduced with permission from Ref. [66]. Copyright 2015, Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [65]. Copyright 2019, Elsevier. d Low-magnification SEM image of M-WGA nanocomposites; e CV curves at scan rate of 10 mV·s−1 for supercapacitors. f Rate capability at current density from 0.5 to 20.0 A·g−1. Reproduced with permission from Ref. [19]. Copyright 2019, Elsevier. g SEM image of RGO/WS2 composite; h charge/discharge performance of rGO/WS2-S in the first activation cycle at 0.05C; i cyclic performance of RGO-S and RGO/WS2-S cathodes at 0.2C for lithium-sulfur batteries. Reproduced with permission from Ref. [59]. Copyright 2019, American Chemical Society

Fig. 8

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19. https://doi.org/10.1038/NCHEM.2085.

    Article  CAS  Google Scholar 

  2. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577. https://doi.org/10.1021/cr100290v.

    Article  CAS  Google Scholar 

  3. Guo M, Zhu XY, Li MD, Zhu JL, Huang GJ, Li YY. Electrostatic self-assembly preparation of three-dimensional graphene coated red phosphorus for lithium-ion battery anode. Chin J Rare Met. 2022,46(8):1048. https://doi.org/10.13373/j.cnki.cjrm.XY21050015.

    Google Scholar 

  4. Li J, Wang JJ, Liu Y, Yuan CZ, Liu GL, Wu NT, Liu XM. Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catal Sci Technol. 2022;12(14):4498. https://doi.org/10.1039/d2cy00577h.

    Article  CAS  Google Scholar 

  5. Martins F, Felgueiras C, Smitkova M, Caetano N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies. 2019;129(6):964. https://doi.org/10.3390/en12060964.

    Article  CAS  Google Scholar 

  6. Meng K, Zhao LM, Zhang NY, Zhang ZF, Shen WX, Zhang YW, Wan B, Fang C, Chen LC, Wang QQ, He JL, Jia XP, Thermoelectric properties of n-type SiGe alloys with Sn incorporation. Rare Met. 2022;41(12):4156. https://doi.org/10.1007/s12598-022-02085-z.

    Article  CAS  Google Scholar 

  7. Song YC, Liao JX, Chen C, Yang J, Chen JC, Gong F, Wang SZ, Xu ZQ, Wu MQ. Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphene doping for lithium and sodium ion batteries. Carbon. 2019;142:697. https://doi.org/10.1016/j.carbon.2018.07.060.

    Article  CAS  Google Scholar 

  8. Huang GW, Liu H, Wang SP, Yang X, Liu BH, Chen HZ, Xu MS. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution. J Mater Chem A. 2015;3(47):24128. https://doi.org/10.1039/c5ta06840a.

    Article  CAS  Google Scholar 

  9. Wu JB, Zhen C, Liu G. Photo-assisted Cl doping of SnO2 electron transport layer for hysteresis-less perovskite solar cells with enhanced efficiency. Rare Met. 2022;41(2):361. https://doi.org/10.1007/s12598-021-01812-2.

    Article  CAS  Google Scholar 

  10. Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A. 2017;5(35):18299. https://doi.org/10.1039/c7ta04268j.

    Article  CAS  Google Scholar 

  11. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability Optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022,46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Google Scholar 

  12. Qu XY, Huang H, Wan T, Hu L, Yu ZL, Liu YJ, Dou AC, Zhou Y, Su MR, Peng XQ, Wu HH, Wu T, Chu DW. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy. 2022;91:106665. https://doi.org/10.1016/j.nanoen.2021.106665.

    Article  CAS  Google Scholar 

  13. Li J, Zhang J, Shen JK, Wu HH, Chen HP, Yuan CZ, Wu NT, Liu GL, Guo DL, Liu XM. Self-supported electrocatalysts for the hydrogen evolution reaction. Mater Chem Front. 2023;7(4):567. https://doi.org/10.1039/D2QM00931E.

    Article  CAS  Google Scholar 

  14. Zhou LY, Yan SC, Lin ZX, Shi Y. In situ reduction of WS2 nanosheets for WS2/reduced graphene oxide composite with superior Li-ion storage. Mater Chem Phys. 2016;171:16. https://doi.org/10.1016/j.matchemphys.2015.12.061.

    Article  CAS  Google Scholar 

  15. Latha M, Rani JV. WS2/Graphene Composite as cathode for rechargeable aluminum-dual ion battery. J Electrochem Soc. 2019;167(1):070501. https://doi.org/10.1149/2.0012007JES.

    Article  Google Scholar 

  16. Chen C, Liang QW, Chen ZX, Zhu WY, Wang ZJ, Li Y, Wu XW, Xiong XH. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew Chem-Int Ed. 2021;60(51):26718. https://doi.org/10.1002/anie.202110441.

    Article  CAS  Google Scholar 

  17. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ, In-situ constructed three-dimensional MoS2MoN heterostructure as the cathode of lithium-sulfur battery. Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  18. Feng KJ, Sun ZF, Liu Y, Tao F, Ma JQ, Qian H, Yu RH, Pan KM, Wang GX, Wei SZ, Zhang QB. Shining light on transition metal tungstate-based nanomaterials for electrochemical applications: structures, progress, and perspectives. Nano Res. 2022;15(8):6924. https://doi.org/10.1007/s12274-022-4581-2.

    Article  CAS  Google Scholar 

  19. Chen WS, Yu X, Zhao ZX, Ji SC, Feng LG. Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochim Acta. 2019;298:313. https://doi.org/10.1016/j.electacta.2018.12.096.

    Article  CAS  Google Scholar 

  20. Xu XD, Rout CS, Yang J, Cao RG, Oh P, Shin HS, Cho J. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J Mater Chem A. 2013;1(46):14548. https://doi.org/10.1039/c3ta13329j.

    Article  CAS  Google Scholar 

  21. Chen C, Liang QW, Wang G, Liu DD, Xiong XH. Grain-eoundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Func Mater. 2022;32(4):2107249. https://doi.org/10.1002/adfm.202107249.

    Article  CAS  Google Scholar 

  22. Wang XW, Yang CH, Xiong XH, Chen GL, Huang MZ, Wang JH, Liu Y, Liu ML, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 2019;16:344. https://doi.org/10.1016/j.ensm.2018.06.015.

    Article  Google Scholar 

  23. Zhu LM, Li Z, Ding GC, Xie LL, Miao YX, Cao XY. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries. J Mater Sci Technol. 2021;89:68. https://doi.org/10.1016/j.jmst.2021.02.020.

    Article  CAS  Google Scholar 

  24. Qi JQ, Huang MY, Ruan CY, Zhu DD, Zhu L, Wei FX, Sui YW, Meng QK. Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors. Rare Met. 2022;41(12):4116. https://doi.org/10.1007/s12598-022-02167-y.

    Article  CAS  Google Scholar 

  25. Shi TZ, Feng YL, Peng T, Yuan BG. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochimica Acta. 2021;381:138245. https://doi.org/10.1016/j.electacta.2021.138245.

  26. Shao JY, Li XR, Wei JL, Pang H, Chen CY. Synthesis of iron phosphate and their composites for lithium/sodium ion batteries. Adv Sustain Syst. 2018;2(8–9):1700154. https://doi.org/10.1002/adsu.201700154.

    Article  CAS  Google Scholar 

  27. Liu ZX, Ha SH, Liu Y, Wang F, Tao F, Xu BR, Yu RH, Wang GX, Ren FZ, Li HX. Application of Ag-based materials in high-performance lithium metal anode: a review. J Mater Sci Technol. 2023;133:165. https://doi.org/10.1016/j.jmst.2022.06.015.

    Article  CAS  Google Scholar 

  28. Wang F, Gao JX, Liu Y, Ren FZ. An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes. J Mater Chem A. 2022;10(34):17395. https://doi.org/10.1039/d2ta03706h.

    Article  CAS  Google Scholar 

  29. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  30. Wang YT, Chen X. Single crystal growth and electrochemical studies of garnet-type fast Li-ion conductors. Tungsten.2022;4(4):263. https://doi.org/10.1007/s42864-022-00176-z.

    Article  Google Scholar 

  31. Samadi M, Sarikhani N, Zirak M, Zhang H, Zhang HL, Moshfegh AZ. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 2018;3(2):90. https://doi.org/10.1039/c7nh00137a.

    Article  CAS  Google Scholar 

  32. Huang JD, Wei ZX, Liao JQ, Ni W, Wang CY, Ma JM. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem. 2019;33:100. https://doi.org/10.1016/j.jechem.2018.09.001.

    Article  Google Scholar 

  33. Liu GL, Cui J, Luo RJ, Liu Y, Huang XX, Wu NT, Jin XY, Chen HP, Tang SY, Kim JK, Liu XM. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci. 2019;469:854. https://doi.org/10.1016/j.apsusc.2018.11.067.

    Article  CAS  Google Scholar 

  34. Al-Tahan MA, Dong YT, Shrshr AE, Liu XB, Zhang R, Guan H, Kang XY, Wei RP, Zhang JM. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J Colloid Interface Sci. 2022;609:235. https://doi.org/10.1016/j.jcis.2021.12.035.

    Article  CAS  Google Scholar 

  35. Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A. 2018;6(26):12185. https://doi.org/10.1039/c8ta02695e.

    Article  CAS  Google Scholar 

  36. Zhao ZJ, Chao YG, Wang F, Dai JY, Qin YF, Bao XB, Yang Y, Guo SJ. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Met. 2021;41(4):1245–54. https://doi.org/10.1007/s12598-021-01850-w.

    Article  CAS  Google Scholar 

  37. Ali S, Waqas M, Jing XP, Chen N, Chen DJ, Xiong J, He WD. Carbon-tungsten disulfide composite bilayer separator for high performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(46):39417. https://doi.org/10.1021/acsami.8b12682.

    Article  CAS  Google Scholar 

  38. Li JH, Yan HT, Wei W, Li XF, Meng LJ. Enhanced lithium storage performance of liquid-phase exfoliated graphene supported WS2 heterojunctions. ChemElectroChem. 2018;5(21):3222. https://doi.org/10.1002/celc.201800926.

    Article  CAS  Google Scholar 

  39. Liu Y, Wei HJ, Zhai XL, Wang F, Ren XY, Xiong Y, Akiyoshi O, Pan KM, Ren FZ, Wei SZ. Graphene-based interlayer for high-performance lithium-sulfur batteries: A review. Mater Des. 2021;211:110171. https://doi.org/10.1016/j.matdes.2021.110171.

    Article  CAS  Google Scholar 

  40. Yu X, Pei CG, Chen WS, Feng LG. 2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochim Acta. 2018;272:119. https://doi.org/10.1016/j.electacta.2018.03.201.

    Article  CAS  Google Scholar 

  41. Li X, Zhang JY, Liu ZC, Fu CC, Niu CM. WS2 nanoflowers on carbon nanotube vines with enhanced electrochemical performances for lithium and sodium-ion batteries. J Alloy Compd. 2018;766:656. https://doi.org/10.1016/j.jallcom.2018.07.008.

    Article  CAS  Google Scholar 

  42. Tao F, Liu Y, Ren XY, Jiang AJ, Wei HJ, Zhai XL, Wang F, Stock HR, Wen SF, Ren FZ. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives. J Alloys Compd. 2021;873:159742. https://doi.org/10.1016/j.jallcom.2021.159742.

    Article  CAS  Google Scholar 

  43. Li JY, Zhang HW, Luo LQ, Li H, He JY, Zu HL, Liu L, Liu H, Wang FY, Song JJ. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J Mater Chem A. 2021;9(4):2205. https://doi.org/10.1039/d0ta10515e.

    Article  CAS  Google Scholar 

  44. Zhang MZ, Tang CM, Cheng W, Fu L. The first-principles study on the performance of the graphene/WS2 heterostructure as an anode material of Li-ion battery. J Alloys Compd. 2021;855(1):157432. https://doi.org/10.1016/j.jallcom.2020.157432.

    Article  CAS  Google Scholar 

  45. Wang XQ, He JR, Zheng BJ, Zhang WL, Chen YF. Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries. Electrochim Acta. 2018;283:1660. https://doi.org/10.1016/j.electacta.2018.07.129.

    Article  CAS  Google Scholar 

  46. Moradpur-Tari E, Sarraf-Mamoory R, Yourdkhani A. 1T-WS2/graphene on activated carbon cloth as a flexible electrode for wearable supercapacitors. Ceram Int. 2022;48(6):8563. https://doi.org/10.1016/j.ceramint.2021.12.066.

    Article  CAS  Google Scholar 

  47. Keshari AK, Kumar R. Nanostructured MoS2-, SnS2-, and WS2-based anode materials for high-performance sodium-ion batteries via chemical methods: a review article. Energ Technol. 2021;9(8):2100179. https://doi.org/10.1002/ente.202100179.

    Article  CAS  Google Scholar 

  48. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464. https://doi.org/10.1021/acs.chemrev.5b00620.

    Article  CAS  Google Scholar 

  49. Shiva K, Matte HSSR, Rajendra HB, Bhattacharyya AJ, Rao CNR. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy. 2013;2(5):787. https://doi.org/10.1016/j.nanoen.2013.02.001.

    Article  CAS  Google Scholar 

  50. Chen RJ, Zhao T, Wu WP, Wu F, Li L, Qian J, Xu R, Wu HM, Albishri HM, Al-Bogami AS, Abd El-Hady D, Lu J, Amine K. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014;14(10):5899. https://doi.org/10.1021/nl502848z.

    Article  CAS  Google Scholar 

  51. Kim I, Park SW, Kim DW. Onion-like crystalline WS2 nanoparticles anchored on graphene sheets as high-performance anode materials for lithium-ion batteries. Chem Eng J. 2019;375:122033. https://doi.org/10.1016/j.cej.2019.122033.

    Article  CAS  Google Scholar 

  52. Chang UJ, Eom K. Enhancing the capacity and stability of a tungsten disulfide anode in a lithium-ion battery using excess sulfur. ACS Appl Mater Interfaces. 2021;13(17):20213. https://doi.org/10.1021/acsami.1c03734.

    Article  CAS  Google Scholar 

  53. Du YC, Zhu XS, Si L, Li YF, Zhou XS, Bao JC. Improving the anode performance of WS2 through a self-assembled double carbon coating. J Phys Chem C. 2015;119(28):15874. https://doi.org/10.1021/acs.jpcc.5b03540.

    Article  CAS  Google Scholar 

  54. Li JB, Liao KX, Wang XR, Shi PH, Fan JC, Xu QJ, Min YL. High-performance flexible all-solid-state supercapacitors based on ultralarge graphene nanosheets and solvent-rxfoliated tungsten disulfide nanoflakes. Adv Mater Interfaces. 2017;4(20):1700419. https://doi.org/10.1002/admi.201700419.

    Article  CAS  Google Scholar 

  55. Huang Y, Jiang Y, Ma ZF, Zhang Y, Zheng XF, Yan XM, Deng XQ, Xiao W, Tang HL. Seaweed-liked WS2/rGO enabling ultralong cycling life and enhanced rate capability for lithium-ion batteries. Nanomaterials. 2019;9(3):469. https://doi.org/10.3390/nano9030469.

    Article  CAS  Google Scholar 

  56. Liu Y, Wang Y, Wang F, Lei ZX, Zhang WH, Pan KM, Liu J, Chen M, Wang GX, Ren FZ, Wei SZ. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries. Nanomaterials. 2019;9(12):1689. https://doi.org/10.3390/nano9121689.

    Article  CAS  Google Scholar 

  57. Feng LL, Xuan ZW, Zhao HB, Bai Y, Guo JM, Su CW, Chen XK. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett. 2014;9:290. https://doi.org/10.1186/1556-276X-9-290.

    Article  CAS  Google Scholar 

  58. Chen DY, Ji G, Ding B, Ma Y, Qu BH, Chen WX, Lee JY. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale. 2013;5(17):7890. https://doi.org/10.1039/c3nr02920d.

    Article  CAS  Google Scholar 

  59. Li XP, Pan ZH, Li ZH, Wang XS, Saravanakumar B, Zhong YT, Xing LD, Xu MQ, Guo CL, Li WS. Coral-like reduced graphene oxide/tungsten sulfide hybrid as a cathode host of high performance lithium-sulfur battery. J Power Sour. 2019;420:22. https://doi.org/10.1016/j.jpowsour.2019.02.089.

    Article  CAS  Google Scholar 

  60. Gopi CVVM, Reddy AE, Bak JS, Cho IH, Kim HJ. One-pot hydrothermal synthesis of tungsten diselenide/reduced graphene oxide composite as advanced electrode materials for supercapacitors. Mater Lett. 2018;223:57. https://doi.org/10.1016/j.matlet.2018.04.023.

    Article  CAS  Google Scholar 

  61. Seo D, Na J, Kim C, Jeong C, Lim S. Improvement of Cu2ZnSnS4 thin film properties by a modified sulfurization process. Thin Solid Films. 2015;591:289. https://doi.org/10.1016/j.tsf.2015.05.060.

    Article  CAS  Google Scholar 

  62. Choi SH, Kang YC. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres. Nanoscale. 2015;7(9):3965. https://doi.org/10.1039/c4nr06880g.

    Article  CAS  Google Scholar 

  63. Cho JS, Park SK, Jeon KM, Piao Y, Kang YC. Mesoporous reduced graphene oxide/WSe2 composite particles for efficient sodium-ion batteries and hydrogen evolution reactions. Appl Surf Sci. 2018;459:309. https://doi.org/10.1016/j.apsusc.2018.07.200.

    Article  CAS  Google Scholar 

  64. Latha M, Biswas S, Rani JV. Application of WS2-G composite as cathode for rechargeable magnesium batteries. Ionics. 2020;26(7):3395. https://doi.org/10.1007/s11581-020-03512-w.

    Article  CAS  Google Scholar 

  65. Xu YP, Wang LZ, Xu Q, Liu LY, Fang XC, Shi C, Ye B, Chen LY, Peng WY, Liu ZJ, Chen WF. 3D hybrids based on WS2/N, S co-doped reduced graphene oxide: Facile fabrication and superior performance in supercapacitors. Appl Surf Sci. 2019;480:1126. https://doi.org/10.1016/j.apsusc.2019.02.217.

    Article  CAS  Google Scholar 

  66. Zhu CB, Kopold P, Li WH, van Aken PA, Maier J, Yu Y. Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite. Journal of Materials Chemistry A. 2015;3(41):20487. https://doi.org/10.1039/c5ta05758b.

    Article  CAS  Google Scholar 

  67. Wang Y, Zhao XJ, Liu ZH. Few-layer WS2 nanosheets with oxygen-incorporated defect-sulphur entrapped by a hierarchical N, S co-doped graphene network towards advanced long-term lithium storage performances. RSC Adv. 2020;10(12):7134. https://doi.org/10.1039/d0ra00558d.

    Article  CAS  Google Scholar 

  68. Wang W, Bao JZ, Sun CF. Liquid-phase exfoliated WS2-graphene composite anodes for potassium-ion batteries. Chin J Struct Chem. 2020;39(3):493. https://doi.org/10.14102/j.cnki.0254-5861.2011-2457.

    Article  CAS  Google Scholar 

  69. Guo XT, Zhang YZ, Zhang F, Li Q, Anjum DH, Liang HF, Liu Y, Liu CS, Alshareef HN, Pang H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A. 2019;7(26):15969. https://doi.org/10.1039/C9TA04062E.

    Article  CAS  Google Scholar 

  70. Wang F, Liu Y, Wei HJ, Wang GX, Ren FZ, Liu XM, Chen M, Volinsky AA, Wei SZ, He YB. Graphene induced growth of Sb2WO6 nanosheets for high-performance pseudocapacitive lithium-ion storage. J Alloys Compd. 2020;839:155614. https://doi.org/10.1016/j.jallcom.2020.155614.

    Article  CAS  Google Scholar 

  71. Zhang XL, Li J, Leng B, Yang L, Song YD, Feng SY, Feng LZ, Liu ZT, Fu ZW, Jiang X, Liu BD. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction. Tungsten .2023;5(1):91. https://doi.org/10.1007/s42864-022-00139-4.

  72. Lu J, Chen ZW, Pan F, Cui Y, Amine K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev. 2018;1(1):35. https://doi.org/10.1007/s41918-018-0001-4.

    Article  CAS  Google Scholar 

  73. Von Lim Y, Huang ZX, Wang Y, Du FH, Zhang J, Chen TP, Ang LK, Yang HY. WS2–3D graphene nano-architecture networks for high performance anode materials of lithium ion batteries. RSC Adv. 2016;6(109):107768. https://doi.org/10.1039/c6ra21141k.

    Article  CAS  Google Scholar 

  74. Song Y, Bai S, Zhu L, Zhao MY, Han DW, Jiang SH, Zhou YN. Tuning pseudocapacitance via C-S bonding in WS2 nanorods anchored on N, S codoped graphene for high-power lithium batteries. ACS Appl Mater Interfaces. 2018;10(16):13606. https://doi.org/10.1021/acsami.8b02506.

    Article  CAS  Google Scholar 

  75. Zhang LS, Fan W, Liu TX. Flexible hierarchical membranes of WS2nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. Nanoscale. 2016;8(36):16387. https://doi.org/10.1039/c6nr04241d.

    Article  CAS  Google Scholar 

  76. Sui D, Xu LQ, Zhang HT, Sun ZH, Kan B, Ma YF, Chen YS. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon. 2020;157:656. https://doi.org/10.1016/j.carbon.2019.10.106.

    Article  CAS  Google Scholar 

  77. Li TT, Guo RS, Luo YN, Li FY, Liu ZC, Meng LC, Yang ZW, Luo HL, Wan YZ. Innovative N-doped graphene-coated WS2 nanosheets on graphene hollow spheres anode with double-sided protective structure for Li-ion storage. Electrochim Acta. 2018;290:128. https://doi.org/10.1016/j.carbon.2019.10.106.

    Article  CAS  Google Scholar 

  78. Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core-shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15(45):1903259. https://doi.org/10.1002/smll.201903259.

    Article  CAS  Google Scholar 

  79. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  Google Scholar 

  80. Wang WJ, Zhu XH, Zhang YJ, Liu YJ, Zhang Q, Fu L. Structural designs for accommodating volume expansion in sodium ion batteries. Chin J Chem. 2018;36(9):866. https://doi.org/10.1002/cjoc.201800216.

    Article  CAS  Google Scholar 

  81. Liu YC, Zhang N, Kang HY, Shang MH, Jiao LF, Chen J. WS2 nanowires as a high-performance anode for sodium-ion batteries. Chem—A Eur J. 2015;21(33):11878. https://doi.org/10.1002/chem.201501759.

    Article  CAS  Google Scholar 

  82. Vakili-Nezhaad GR, Al-Wadhahi M, Gujrathi AM, Al-Rawahi N, Mohammadi M. Exploring the possibility of the zigzag WS2 nanoribbons as anode materials for sodium-ion batteries. Appl Phys A—Mater Sci Process. 2019;125(1):47. https://doi.org/10.1007/s00339-018-2336-4.

    Article  CAS  Google Scholar 

  83. Zheng M, Guo RS, Liu ZC, Wang BY, Meng LC, Li FY, Li TT, Luo YN. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloy Compd. 2018;735:1262. https://doi.org/10.1016/j.jallcom.2017.11.250.

    Article  CAS  Google Scholar 

  84. Kang BY, Wang YY, He XT, Wu YL, Li XY, Lin CY, Chen QH, Zeng LX, Wei MD, Qian QR. Facile fabrication of WS2 nanocrystals confined in chlorella-derived N,P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan. Dalton Trans. 2021;50(41):14745. https://doi.org/10.1039/d1dt01582f.

    Article  CAS  Google Scholar 

  85. Li TT, Guo RS, Luo YN, Li FY, Meng LC, Sun XH, Yang ZW, Luo HL, Wan YZ. Improved lithium and sodium ion storage properties of WS2 anode with three-layer shell structure. Electrochimica Acta. 2020;331:135424. https://doi.org/10.1016/j.electacta.2019.135424.

  86. Su DW, Dou SX, Wang GX. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem Commun. 2014;50(32):4192. https://doi.org/10.1039/c4cc00840e.

    Article  CAS  Google Scholar 

  87. Tang M, Wu YT, Yang JH, Wang HX, Lin T, Xue YH. Graphene/tungsten disulfide core-sheath fibers: High-performance electrodes for flexible all-solid-state fiber-shaped supercapacitors. Journal of Alloys and Compounds. 2021;858:157747. https://doi.org/10.1016/j.jallcom.2020.157747.

  88. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597. https://doi.org/10.1039/c3ee44164d.

    Article  CAS  Google Scholar 

  89. Xia MY, Ning J, Wang D, Feng X, Wang BY, Guo HB, Zhang JC, Hao Y. Ammonia-assisted synthesis of gypsophila-like 1T-WSe2/graphene with enhanced potassium storage for all-solid-state supercapacitor. Chem Eng J. 2021;405:126611. https://doi.org/10.1016/j.cej.2020.126611.

    Article  CAS  Google Scholar 

  90. Zhang CQ, Fei B, Yang DW, Zhan HB, Wang JA, Diao JF, Li JS, Henkelman G, Cai DP, Jacas Biendicho J, Ramon Morante J, Cabot A. Robust lithium-sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space. Adv Func Mater. 2022;32(24):2201322. https://doi.org/10.1002/adfm.202201322.

    Article  CAS  Google Scholar 

  91. Xiao SJ, Zhang J, Deng YQ, Zhou GM, Wang RC, He YB, Lv W, Yang QH. Graphene-templated growth of WS2 nanoclusters for catalytic conversion of polysulfides in lithium-sulfur batteries. ACS Appl Energy Mater. 2020;3(5):4923. https://doi.org/10.1021/acsaem.0c00488.

    Article  CAS  Google Scholar 

  92. Ni W, Li X, Shi LY, Ma JM. Research progress on ZnSe and ZnTe anodes for rechargeable batteries. Nanoscale. 2022;14(27):9609. https://doi.org/10.1039/d2nr02366k.

    Article  CAS  Google Scholar 

  93. Lu Y, Wang TY, Li XR, Zhang GX, Xue HG, Pang H. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv. 2016;6(90):87188. https://doi.org/10.1039/c6ra15736j.

    Article  CAS  Google Scholar 

  94. Feng W, Wen X, Wang YZ, Song LY, Li XH, Du RF, Yang JB, Li H, He J, Shi JP. Interfacial coupling SnSe2/SnSe heterostructures as long cyclic anodes of lithium-ion battery. Advanced science. 2022. https://doi.org/10.1002/advs.202204671.

  95. Chen YL, Song L, Guo H, Xue HR, Wang T, He P, He JP. Hydrothermal synthesis and ORR performance of tungsten disulfide/reduced graphene oxide composite. Chin J Inorg Chem. 2016;32(4):633. https://doi.org/10.11862/CJIC.2016.073.

    Article  CAS  Google Scholar 

  96. Tu CC, Lin LY, Xiao BC, Chen YS. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J Power Sour. 2016;320:78. https://doi.org/10.1016/j.jpowsour.2016.04.083.

    Article  CAS  Google Scholar 

  97. Ratha S, Rout CS. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a aacile hydrothermal method. ACS Appl Mater Interfaces. 2013;5(21):11427. https://doi.org/10.1021/am403663f.

    Article  CAS  Google Scholar 

  98. Xu XW, Chu H, Zhang ZQ, Dong P, Baines R, Ajayan PM, Shen JF, Ye MX. Integrated energy aerogel of N, S-rGO/WSe2/NiFe-LDH for both energy conversion and storage. ACS Appl Mater Interfaces. 2017;9(38):32756. https://doi.org/10.1021/acsami.7b09866.

    Article  CAS  Google Scholar 

  99. Dong YS, Chen SZ, Liu JL, Lei JL, Liu FG, Yang W, Wang JH. Polygonal WS2-decorated-graphene multilayer films with microcavities prepared from a cheap precursor as anode materials for lithium-ion batteries. Mater Lett. 2019;254:73. https://doi.org/10.1016/j.matlet.2019.07.029.

    Article  CAS  Google Scholar 

  100. Wang QZ, Wang YC, Zhang X, Wang GK, Ji PG, Yin FX. WSe2/reduced graphene oxide nanocomposite with superfast sodium ion storage ability as anode for sodium ion capacitors. J Electrochem Soc. 2018;165(16):A3642. https://doi.org/10.1149/2.0231816jes.

    Article  CAS  Google Scholar 

  101. Wang P, Sun FH, Xiong SL, Zhang ZC, Duan B, Zhang CH, Feng JK, Xi BJ. WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angewandte Chemie-International Edition. 2022;61(7):e202116048. https://doi.org/10.1002/anie.202116048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2020YFB1713500), the Chinese 02 Special Fund (No. 2017ZX02408003), Open Fund of State Key Laboratory of Advanced Refractories (No. SKLAR202210), the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, & Henan Key Laboratory of High-temperature Structural and Functional Materials, Henan University of Science and Technology (No. HKDNM2019013), the Foundation of Department of Science and Technology of Henan Province (No. 212102210219) the Student Research Training Plan of Henan University of Science and Technology (No. 2021035), and the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province (No. S202110464005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu, Guang-Xin Wang or Qiao-Bao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YM., Liu, Y., Feng, KJ. et al. Emerging WS2/WSe2@graphene nanocomposites: synthesis and electrochemical energy storage applications. Rare Met. 43, 1–19 (2024). https://doi.org/10.1007/s12598-023-02424-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02424-8

Keywords

Navigation