Skip to main content
Log in

Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-entropy multi-elemental (HEM) electrocatalysts present superior catalytic performance due to the efficient synergism of their components. HEM electrocatalysts are usually prepared through hydrothermal reactions or calcination, which could generate undesired heterogeneous structures that hinder the exploration of the structure-property relationship of these HEM electrocatalysts. Herein, we report a sol-gel method to synthesize homogeneous HEM electrocatalysts for electro-oxidation of methanol and urea (methanol oxidation reaction (MOR) and urea oxidation reaction (UOR)), through an acid-catalyzed gelation at room temperature. With Ni as the primary component for MOR and UOR, Co can reduce the overpotentials, while Fe can increase the catalytic activities and durability. Borate and phosphate can tune the charge distribution in active sites and speed up the reaction kinetics through fast proton transfer. Thus, the optimal Ni2Fe0.5Co0.5-BP HEM catalyst demonstrates superior catalytic activity together with good durability and great resistance to CO poisoning. In addition, a direct methanol fuel cell with Ni2Fe0.5Co0.5-BP electrode can not only provide power, but also produce formic acid with high yield and high Faraday efficiency. This work presents a simple strategy to prepare high-performance HEM electrocatalysts for fuel cells and production of value-added chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J. R.; Jilani, S. Z.; Lin, H. H.; Liu, X. M.; Wei, K. C.; Jia, Y. K.; Zhang, P.; Chi, M. F.; Tong, Y. Y. J.; Xi, Z. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 11527–11533.

    Article  CAS  Google Scholar 

  2. Yang, C. Z.; Jiang, Q. G.; Li, W. H.; He, H. Y.; Yang, L.; Lu, Z. Y.; Huang, H. J. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation. Chem. Mater. 2019, 31, 9277–9287.

    Article  CAS  Google Scholar 

  3. Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

    Article  CAS  Google Scholar 

  4. Yang, L.; Li, G. Q.; Ma, R. P.; Hou, S.; Chang, J. F.; Ruan, M. B.; Cai, W. B.; Jin, Z.; Xu, W. L.; Wang, G. L. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 2021, 14, 2853–2860.

    Article  CAS  Google Scholar 

  5. Yang, C. Z.; Jiang, Q. G.; Liu, H.; Yang, L.; He, H. Y.; Huang, H. J.; Li, W. H. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. J. Mater. Chem. A 2021, 9, 15432–15440.

    Article  CAS  Google Scholar 

  6. Chen, F.; Gao, L. L.; Zhai, M. X.; Wu, N.; Zhang, X.; Guo, R. H.; Ma, M. M.; Hu, T. P. Carbon monoxide-resistant copper-cobalt nanocrystal@nitrogen-doped carbon electrocatalysts for methanol oxidation reaction. J. Alloys Compd. 2021, 888, 161563.

    Article  CAS  Google Scholar 

  7. Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.

    Article  CAS  Google Scholar 

  8. Zhai, M. X.; Chen, F.; Wu, N.; Zhang, X.; Guo, R. H.; Ma, M. M.; Hu, T. P. Highly conductive and CO-resistant cobalt-based monolithic electrodes for the catalytic oxidation of methanol. ChemElectroChem 2021, 8, 4854–4860.

    Article  CAS  Google Scholar 

  9. Wang, X. P.; Xi, S. B.; Lee, W. S. V.; Huang, P. R.; Cui, P.; Zhao, L.; Hao, W. C.; Zhao, X. S.; Wang, Z. B.; Wu, H. J. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647.

    Article  CAS  Google Scholar 

  10. Huang, H. J.; Wei, Y. J.; Yang, Y.; Yan, M. M.; He, H. Y.; Jiang, Q. G.; Yang, X. F.; Zhu, J. X. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J. Energy Chem. 2021, 57, 601–609.

    Article  Google Scholar 

  11. Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.

    Article  CAS  Google Scholar 

  12. Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119165.

    Article  CAS  Google Scholar 

  13. Dubale, A. A.; Zheng, Y. Y.; Wang, H. L.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J. W.; Sethi, N. K.; He, L. Q.; Zheng, Z. K. et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem., Int. Ed. 2020, 59, 13891–13899.

    Article  CAS  Google Scholar 

  14. Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

    Article  CAS  Google Scholar 

  15. Wang, L.; Liu, Z. P.; Zhu, S. Q.; Shao, M. H.; Yang, B. L.; Chen, J. G. Tungsten carbide and cobalt modified nickel nanoparticles supported on multiwall carbon nanotubes as highly efficient electrocatalysts for urea oxidation in alkaline electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 41338–41343.

    Article  CAS  Google Scholar 

  16. Li, J. S.; Wei, R. L.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y. Y.; Cabot, A.; Cui, C. H. Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide. Aggew. Chem., Int. Ed. 2020, 55, 20826–20830.

    Article  CAS  Google Scholar 

  17. Du, J. N.; You, S. J.; Li, X. R.; Tang, B.; Jiang, B. J.; Yu, Y.; Cai, Z.; Ren, N. Q.; Zou, J. L. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 686–697.

    Article  CAS  Google Scholar 

  18. Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. H. Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. 2019, 131, 12313–12317.

    Article  Google Scholar 

  19. Xu, W.; Chen, H.; Jie, K. C.; Yang, Z. Z.; Li, T. T.; Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem., Int. Ed. 2019, 58, 5018–5022.

    Article  CAS  Google Scholar 

  20. Liu, M. M.; Zhang, Z.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

    Article  CAS  Google Scholar 

  21. Nutor, R. K.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Fang, Y. Z.; Zhang, Y.; Jiang, J. Z. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv. Eng. Mater. 2020, 22, 2000466.

    Article  CAS  Google Scholar 

  22. Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

    Article  CAS  Google Scholar 

  23. Chang, X. J.; Zeng, M. Q.; Liu, K. L.; Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 2020, 32, 1907226.

    Article  CAS  Google Scholar 

  24. Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 2019, 29, 1905933.

    Article  CAS  Google Scholar 

  25. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 355, 1489–1494.

    Article  CAS  Google Scholar 

  26. Warren, S. C.; Perkins, M. R.; Adams, A. M.; Kamperman, M.; Burns, A. A.; Arora, H.; Herz, E.; Suteewong, T.; Sai, H.; Li, Z. H. et al. A silica sol-gel design strategy for nanostructured metallic materials. Nat. Mater. 2012, 11, 460–467.

    Article  CAS  Google Scholar 

  27. Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

    Article  CAS  Google Scholar 

  28. Fan, J.; Boettcher, S. W.; Stucky, G. D. Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem. Mater. 2006, 18, 6391–6396.

    Article  CAS  Google Scholar 

  29. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  30. Abdullah, M. I.; Hameed, A.; Zhang, N.; Ma, M. M. Ultrasonic-assisted synthesis of amorphous polyelemental hollow nanoparticles as efficient and stable bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 2019, 6, 1900586.

    Article  CAS  Google Scholar 

  31. Abdullah, M. I.; Hameed, A.; Hu, T.; Zhang, N.; Ma, M. Crystalline multi-metal nanosheets array with enriched oxygen vacancies as efficient and stable bifunctional electrocatalysts for water splitting. ACS Appl. Energy Mater. 2019, 2, 8919–8929.

    Article  CAS  Google Scholar 

  32. Kim, J. W.; Augustyn, V.; Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2012, 2, 141–148.

    Article  CAS  Google Scholar 

  33. Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112.

    Article  CAS  Google Scholar 

  34. Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energy Environ. Sci. 2014, 7, 1382–1386.

    Article  CAS  Google Scholar 

  35. Liang, L.; Yu, F. K.; An, Y. R.; Liu, M. M.; Zhou, M. H. Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ. Sci. Pollut. Res. 2017, 24, 1122–1132.

    Article  CAS  Google Scholar 

  36. Kan, W. H.; Chen, M.; Bae, J. S.; Kim, B. H.; Thangadurai, V. Determination of Fe oxidation states in the B-site ordered perovskite-type Ba2Ca0.67Fe0.33NbO6-δ at the surface (nano-scale) and bulk by variable temperature XPS and TGA and their impact on electrochemical catalysis. J. Mater. Chem. A 2014, 2, 8736–8741.

    Article  CAS  Google Scholar 

  37. Feng, X. G.; Wang, H. X.; Bo, X. J.; Guo, L. P. Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 8018–8024.

    Article  CAS  Google Scholar 

  38. Tan, S. J. R.; Abdelwahab, I.; Chu, L. Q.; Poh, S. M.; Liu, Y. P.; Lu, J.; Chen, W.; Loh, K. P. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619.

    Article  CAS  Google Scholar 

  39. Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y. Q. et al. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 4154–4160.

    Article  CAS  Google Scholar 

  40. Wang, S. L.; Yang, X. D.; Liu, Z.; Yang, D. W.; Feng, L. G. Efficient nanointerface hybridization in a nickel/cobalt oxide nanorod bundle structure for urea electrolysis. Nanoscale 2020, 12, 10827–10833.

    Article  Google Scholar 

  41. Abdullah, M. I.; Hameed, A.; Zhang, N.; Islam, M. H.; Ma, M. M.; Pollet, B. G.; Ma, M. Ultrasonically surface-activated nickel foam as a highly efficient monolith electrode for the catalytic oxidation of methanol to formate. ACS Appl. Mater. Interfaces 2021, 13, 30603–30613.

    Article  CAS  Google Scholar 

  42. Cui, X.; Xiao, P.; Wang, J.; Zhou, M.; Guo, W. L.; Yang, Y.; He, Y. J.; Wang, Z. W.; Yang, Y. K.; Zhang, Y. H. et al. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angew. Chem. 2017, 125, 4559–4564.

    Article  Google Scholar 

  43. Rezaee, S.; Shahrokhian, S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol. Appl. Catal. B: Environ. 2019, 244, 802–813.

    Article  CAS  Google Scholar 

  44. Ullah, N.; Xie, M.; Oluigbo, C. J.; Xu, Y. G.; Xie, J. M.; Rasheed, H. U.; Zhang, M. M. Nickel and cobalt in situ grown in 3-dimensional hierarchical porous graphene for effective methanol electro-oxidation reaction. J. Electroanal. Chem. 2019, 838, 7–15.

    Article  CAS  Google Scholar 

  45. Baksi, A.; Nandam, S. H.; Wang, D.; Kruk, R.; Chellali, M. R.; Ivanisenko, J.; Gallino, I.; Hahn, H.; Bag, S. Ni60Nb40 nanoglass for tunable magnetism and methanol oxidation. ACS Appl. Nano Mater. 2020, 3, 7252–7259.

    Article  CAS  Google Scholar 

  46. Xiong, L. K.; Sun, Z. T.; Zhang, X.; Zhao, L.; Huang, P.; Chen, X. W.; Jin, H. D.; Sun, H.; Lian, Y. B.; Deng, Z. et al. Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat. Commun. 2019, 10, 3782.

    Article  CAS  Google Scholar 

  47. Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Holdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Electrocatalytic methanol oxidation over Cu, Ni and Bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl. Catal. B: Environ. 2019, 244, 272–283.

    Article  CAS  Google Scholar 

  48. Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic Co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B: Environ. 2021, 281, 119510.

    Article  CAS  Google Scholar 

  49. Anu Prathap, M. U.; Srivastava, R. Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2013, 2, 1046–1053.

    Article  CAS  Google Scholar 

  50. Anantharaj, S.; Sugime, H.; Noda, S. Ultrafast growth of a Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 27327–27338.

    Article  CAS  Google Scholar 

  51. Cui, X.; Guo, W.; Zhou, M.; Yang, Y.; Li, Y.; Xiao, P.; Zhang, Y.; Zhang, X. Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl. Mater. Interfaces 2015, 7, 493–503.

    Article  CAS  Google Scholar 

  52. Guo, F.; Ye, K.; Cheng, K.; Wang, G. L.; Cao, D. X. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium. J. Power Sources 2015, 278, 562–568.

    Article  CAS  Google Scholar 

  53. Chen, F.; Wu, N.; Zhai, M. X.; Zhang, X.; Guo, R. H.; Hu, T. P.; Ma, M. M. Robust copper nanocrystal/nitrogen-doped carbon monoliths as carbon monoxide-resistant electrodes for methanol oxidation reaction. J. Energy Chem. 2021, 58, 247–255.

    Article  Google Scholar 

  54. Forslund, R. P.; Alexander, C. T.; Abakumov, A. M.; Johnston, K. P.; Stevenson, K. J. Enhanced electrocatalytic activities by substitutional tuning of nickel-based ruddlesden-popper catalysts for the oxidation of urea and small alcohols. ACS Catal. 2019, 9, 2664–2673.

    Article  CAS  Google Scholar 

  55. Li, D.; Huang, L. L.; Tian, Y.; Liu, T. T.; Zhen, L.; Feng, Y. J. Facile synthesis of porous Cu-Sn alloy electrode with prior selectivity of formate in a wide potential range for CO2 electrochemical reduction. Appl. Catal. B: Environ. 2021, 292, 120119.

    Article  CAS  Google Scholar 

  56. Wu, N.; Zhai, M. X.; Chen, F.; Zhang, X.; Guo, R. H.; Hu, T. P.; Ma, M. M. Nickel nanocrystal/nitrogen-doped carbon composites as efficient and carbon monoxide-resistant electrocatalysts for methanol oxidation reactions. Nanoscale 2020, 12, 21687–21694.

    Article  CAS  Google Scholar 

  57. Zhai, M. X.; Chen, F.; Wu, N.; Guo, R. H.; Zhang, X.; Hu, T. P.; Ma, M. M. Porous layered cobalt nanocrystal/nitrogen-doped carbon composites as efficient and CO-resistant electrocatalysts for methanol oxidation reaction. Appl. Surf. Sci. 2021, 545, 149016.

    Article  CAS  Google Scholar 

  58. Cao, C. S.; Ma, D. D.; Jia, J. C.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Divergent paths, same goal: A pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Adv. Mater. 2021, 33, 2008631.

    Article  CAS  Google Scholar 

  59. Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21778052 and 21975240) and by the Fundamental Research Funds for the Central Universities (No. WK2060190102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhang or Mingming Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushiana, T., Khan, M., Abdullah, M.I. et al. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 15, 5014–5023 (2022). https://doi.org/10.1007/s12274-022-4186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4186-9

Keywords

Navigation