Skip to main content
Log in

Design strategies of Pd-based electrocatalysts for efficient oxygen reduction

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (ORR) occurs at the cathode of fuel cells and metal–air batteries, but usually suffers from sluggish kinetics. To solve this issue, efficient electrocatalysts are highly desired. Palladium (Pd)-based nanomaterials, as the most promising substitute of platinum (Pt), exhibit superior activity and stability in ORR electrocatalysis. The delicate regulation of the structure and/or composition shows great potential in improving the electrocatalytic ORR performance of Pd-based nanomaterials. In this review, we retrospect the recent advance of Pd-based ORR electrocatalysts, and analyses the relationship between nanostructure and catalytic performance. We start with the ORR mechanism and indicators of ORR performance in both alkaline and acidic media, followed by the synthetic methods for Pd-based nanoparticles. Then, we emphasize the design strategies of efficient Pd-based ORR catalysts from the perspective of composition, crystal phase, morphology, and support effects. Last but not least, we conclude with possible opportunities and outlook on Pd-based nanomaterials toward ORR.

Graphical abstract

摘要

氧还原反应(ORR)是燃料电池和金属空气电池的阴极反应,但通常动力学较为缓慢。为解决这个问题, 需要高效的电催化剂。作为最有希望的铂的替代材料,钯(Pd)基纳米材料在ORR电催化中表现出优异的活性和稳定性。 结构或组分的精准调控在改善Pd基纳米材料的电催化ORR性能方面显示出巨大的潜力。这篇综述介绍了Pd基ORR电催化剂的最新进展, 并分析了纳米结构与催化性能之间的关系。 本文首先讨论了ORR的反应机理及其在碱性和酸性介质中的性能指标,然后总结了Pd基纳米粒子的合成方法。接下来,从组分、晶相、形貌和载体的影响角度强调了高效Pd基ORR催化剂的设计策略。 最后,总结了Pd基纳米材料在ORR应用中可能面临的机遇和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [35]. Copyright 2019, the Royal Society of Chemistry. b A volcano map of ORR activity as a function of oxygen binding energy. Redrawn with permission from Ref. [36]. Copyright 2004, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [50]. Copyright 2018, the Royal Society of Chemistry. TEM images for c porous palladium nanostructures and d porous Au@Pd nanostructures. Reproduced with permission from Ref. [51]. Copyright 2013, Wiley–VCH. e, f SEM images of mesoporous Pd nanoparticles. Reproduced with permission from Ref. [52]. Copyright 2019, the Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [64]. Copyright 2015, American Chemical Society. e Schematic illustration for formation of mesoporous PdCu films with vertical mesochannels; f, g Top-view SEM images, h TEM image and i HAADF-STEM cross-sectional image of mesoporous Pd81Cu19 films. Reproduced with permission from Ref. [65]. Copyright 2018, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [68]. Copyright 2013, Wiley–VCH. c, d SEM images of c Pd15Ce5Al80 alloy ribbon and d nanoporous PdCe nanocubes. Reproduced with permission from Ref. [69]. Copyright 2018, the Royal Society of Chemistry. e Illustration of electrochemical dealloying process of Pd/Ni or Pd/Mn; f STEM image and g corresponding elemental mapping images of Pd (red) and Ni (green) for PdNi/C before alloying; h STEM image and i corresponding elemental mapping images for PdNi/C after alloying. Reproduced with permission from Ref. [71]. Copyright 2020, American Chemical Society. j Illustration of synthesis of bimetallic CuPd alloy multipods by GRR from Ref. [79]. Copyright 2017, the Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [89]. Copyright 2019, American Chemical Society. d HAADF-STEM, e atomic-resolution aberration-corrected HAADF-STEM, and f STEM-EDX elemental mapping images of Pd3Pb ultrathin porous intermetallic nanosheets (UPINs); g polarization curves for Pd3Pb UPINs/C (green), Pd UNs/C (orange), Pt/C (red), and Pd/C (black) electrocatalysts toward ORR; h polarization curves of Pd3Pb UPINs/C before and after cycling test; i polarization curves of different electrocatalysts with addition of methanol. Reproduced with permission from Ref. [90]. Copyright 2021, Wiley–VCH

Fig. 7

Reproduced with permission from Ref. [29]. Copyright 2018, the Royal Society of Chemistry. c HAADF-STEM and d TEM images of porous Pd metallene; e ORR polarization curves of different catalysts. Reproduced with permission from Ref. [101]. Copyright 2021, Wiley–VCH. f HAADF-STEM image and g schematic diagram of Pd4Sn wavy nanowires; h ORR polarization curves for different electrocatalysts before and after 10,000 cycles of accelerated durability tests (ADTs). Reproduced with permission from Ref. [102]. Copyright 2019, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [108]. Copyright 2021, American Chemical Society. b, c Monoclinic Pd5Bi2 and fcc Pd3Bi nanocrystals. Reproduced with permission from Ref. [109]. Copyright 2021, American Chemical Society. d fct-FePd/Pd nanoparticles. Reproduced with permission from Ref. [110]. Copyright 2015, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [109]. Copyright 2021, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [115]. Copyright 2015, American Chemical Society. c TEM image of AL-Pd/Mo2C embedded in octahedral carbon frameworks. d ORR polarization curves of different catalysts. Reproduced with permission from Ref. [119]. Copyright 2021, American Chemical Society. e TEM image of PdH0.706@Ni–B composites; f polarization curves of PdHx with different x value, Pt/C and PdH0.706@Ni–B/C catalysts. Reproduced with permission from Ref. [120]. Copyright 2017, Wiley–VCH

Fig. 11

Similar content being viewed by others

References

  1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998. https://doi.org/10.1126/science.aad4998.

    Article  Google Scholar 

  2. Wang C, Tian Y, Gu Y, Xue KH, Sun H, Miao X, Dai L. Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy. 2021;85: 106030. https://doi.org/10.1016/j.nanoen.2021.106030.

    Article  CAS  Google Scholar 

  3. Huang C, Wang X, Wang D, Zhao W, Bu K, Xu J, Huang X, Bi Q, Huang J, Huang F. Atomic pillar effect in PdxNbS2 to boost basal plane activity for stable hydrogen evolution. Chem Mater. 2019;31(13):4726. https://doi.org/10.1021/acs.chemmater.9b00821.

    Article  CAS  Google Scholar 

  4. Wang D, Wang X, Lu Y, Song C, Pan J, Li C, Sui M, Zhao W, Huang F. Atom-scale dispersed palladium in a conductive Pd0.1TaS2 lattice with a unique electronic structure for efficient hydrogen evolution. J Mater Chem A. 2017;5(43):22618. https://doi.org/10.1039/c7ta06447k.

    Article  CAS  Google Scholar 

  5. Zuo X, Yan R, Zhao L, Long Y, Shi L, Cheng Q, Liu D, Hu C. A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J Mater Chem A. 2022;10(28):14857. https://doi.org/10.1039/d2ta02597c.

    Article  CAS  Google Scholar 

  6. Zhang W, Chang J, Wang G, Li Z, Wang M, Zhu Y, Li B, Zhou H, Wang G, Gu M, Feng Z, Yang Y. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ Sci. 2022;15(4):1573. https://doi.org/10.1039/d1ee03972e.

    Article  CAS  Google Scholar 

  7. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev. 2015;44(8):2168. https://doi.org/10.1039/c4cs00484a.

    Article  CAS  Google Scholar 

  8. Zhu C, Li H, Fu S, Du D, Lin Y. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev. 2016;45(3):517. https://doi.org/10.1039/c5cs00670h.

    Article  CAS  Google Scholar 

  9. Yang W, Liu X, Yue X, Jia J, Guo S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc. 2015;137(4):1436. https://doi.org/10.1021/ja5129132.

    Article  CAS  Google Scholar 

  10. Huang L, Zaman S, Tian X, Wang Z, Fang W, Xia BY. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc Chem Res. 2021;54(2):311. https://doi.org/10.1021/acs.accounts.0c00488.

    Article  CAS  Google Scholar 

  11. Ma Z, Cano ZP, Yu A, Chen Z, Jiang G, Fu X, Yang L, Wu T, Bai Z, Lu J. Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew Chem Int Ed. 2020;59(42):18334. https://doi.org/10.1002/anie.202003654.

    Article  CAS  Google Scholar 

  12. Dai L, Xue Y, Qu L, Choi HJ, Baek JB. Metal-free catalysts for oxygen reduction reaction. Chem Rev. 2015;115(11):4823. https://doi.org/10.1021/cr5003563.

    Article  CAS  Google Scholar 

  13. Zhu C, Shi Q, Xu BZ, Fu S, Wan G, Yang C, Yao S, Song J, Zhou H, Du D, Beckman SP, Su D, Lin Y. Hierarchically porous M-N-C (M=Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater. 2018;8(29):1801956. https://doi.org/10.1002/aenm.201801956.

    Article  CAS  Google Scholar 

  14. Xue Q, Xu G, Mao R, Liu H, Zeng J, Jiang J, Chen Y. Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction. J Energ Chem. 2017;26(6):1153. https://doi.org/10.1016/j.jechem.2017.06.007.

    Article  Google Scholar 

  15. Luo JY, Han PP, Dan ZH, Tang T, Qin FX, Chang H, Zhou L. Electrocatalytic oxygen reduction performances of surface Ag granular packs electrodeposited from dual-phase Ag35.5Zn64.5 precursor alloys by triangle wave potential cycling. Rare Met. 2021;40(12):3531. https://doi.org/10.1007/s12598-020-01700-1.

    Article  CAS  Google Scholar 

  16. Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc. 2012;134(38):15849. https://doi.org/10.1021/ja305623m.

    Article  CAS  Google Scholar 

  17. Li Z, Wei L, Jiang WJ, Hu Z, Luo H, Zhao W, Xu T, Wu W, Wu M, Hu JS. Chemical state of surrounding iron species affects the activity of Fe–Nx for electrocatalytic oxygen reduction. Appl Catal B Environ. 2019;251:240. https://doi.org/10.1016/j.apcatb.2019.03.046.

    Article  CAS  Google Scholar 

  18. Zhang J, Zhang C, Zhao Y, Amiinu IS, Zhou H, Liu X, Tang Y, Mu S. Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl Catal B Environ. 2017;211:148. https://doi.org/10.1016/j.apcatb.2017.04.038.

    Article  CAS  Google Scholar 

  19. Rybarczyk MK, Gontarek E, Lieder M, Titirici MM. Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost. Appl Surf Sci. 2018;435:543. https://doi.org/10.1016/j.apsusc.2017.11.064.

    Article  CAS  Google Scholar 

  20. Lin Z, Yang A, Zhang B, Liu B, Zhu J, Tang Y, Qiu X. Coupling the atomically dispersed Fe–N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202107683.

    Article  Google Scholar 

  21. Si W, Yang Z, Hu X, Lv Q, Li X, Zhao F, He J, Huang C. Preparation of zero valence Pd nanoparticles with ultra-efficient electrocatalytic activity for ORR. J Mater Chem A. 2021;9(25):14507. https://doi.org/10.1039/d1ta00788b.

    Article  CAS  Google Scholar 

  22. Chen A, Ostrom C. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev. 2015;115(21):11999. https://doi.org/10.1021/acs.chemrev.5b00324.

    Article  CAS  Google Scholar 

  23. Wang T, Chutia A, Brett DJL, Shearing PR, He G, Chai G, Parkin IP. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ Sci. 2021;14(5):2639. https://doi.org/10.1039/d0ee03915b.

    Article  CAS  Google Scholar 

  24. Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev. 2016;116(6):3594. https://doi.org/10.1021/acs.chemrev.5b00462.

    Article  CAS  Google Scholar 

  25. Yang Y, Chen G, Zeng R, Villarino AM, DiSalvo FJ, van Dover RB, Abruna HD. Combinatorial studies of palladium-based oxygen reduction electrocatalysts for alkaline fuel cells. J Am Chem Soc. 2020;142(8):3980. https://doi.org/10.1021/jacs.9b13400.

    Article  CAS  Google Scholar 

  26. Li Y, Lin S, Ren X, Mi H, Zhang P, Sun L, Deng L, Gao Y. One-step rapid in-situ synthesis of nitrogen and sulfur co-doped three-dimensional honeycomb-ordered carbon supported PdNi nanoparticles as efficient electrocatalyst for oxygen reduction reaction in alkaline solution. Electrochim Acta. 2017;253:445. https://doi.org/10.1016/j.electacta.2017.08.143.

    Article  CAS  Google Scholar 

  27. Liu Z, Yang X, Lu B, Shi Z, Sun D, Xu L, Tang Y, Sun S. Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl Catal B Environ. 2019;243:86. https://doi.org/10.1016/j.apcatb.2018.10.028.

    Article  CAS  Google Scholar 

  28. Duan H, Xu C. Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Phys Chem Chem Phys. 2016;18(5):4166. https://doi.org/10.1039/c5cp07184d.

    Article  CAS  Google Scholar 

  29. Wang H, Yin S, Li Y, Yu H, Li C, Deng K, Xu Y, Li X, Xue H, Wang L. One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. J Mater Chem A. 2018;6(8):3642. https://doi.org/10.1039/c7ta10342e.

    Article  CAS  Google Scholar 

  30. Mahata A, Nair AS, Pathak B. Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catal Sci Technol. 2019;9(18):4835. https://doi.org/10.1039/c9cy00895k.

    Article  CAS  Google Scholar 

  31. Slanac DA, Hardin WG, Johnston KP, Stevenson KJ. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc. 2012;134(23):9812. https://doi.org/10.1021/ja303580b.

    Article  CAS  Google Scholar 

  32. Srejic I, Rakocevic Z, Nenadovic M, Strbac S. Oxygen reduction on polycrystalline palladium in acid and alkaline solutions: topographical and chemical Pd surface changes. Electrochim Acta. 2015;169:22. https://doi.org/10.1016/j.electacta.2015.04.032.

    Article  CAS  Google Scholar 

  33. Naik KM, Hashisake K, Hamada T, Higuchi E, Inoue H. Intermetallic PdZn nanoparticles loaded on deficient TiO2 nanosheets as a support: a bifunctional electrocatalyst for oxygen reduction in PEMFCs and the glycerol oxidation reactions. J Mater Chem A. 2022;10(26):13987. https://doi.org/10.1039/d2ta03736j.

    Article  CAS  Google Scholar 

  34. Yu Z, Xu S, Feng Y, Yang C, Yao Q, Shao Q, Li YF, Huang X. Phase-controlled synthesis of Pd-Se nanocrystals for phase-dependent oxygen reduction catalysis. Nano Lett. 2021;21(9):3805. https://doi.org/10.1021/acs.nanolett.1c00147.

    Article  CAS  Google Scholar 

  35. Li L, He J, Wang Y, Lv X, Gu X, Dai P, Liu D, Zhao X. Metal-organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J Mater Chem A. 2019;7(5):1964. https://doi.org/10.1039/c8ta11704g.

    Article  CAS  Google Scholar 

  36. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108:17886. https://doi.org/10.1021/jp047349j.

    Article  CAS  Google Scholar 

  37. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G, Yang M, Wang J. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput Mater. 2019;5(1):78. https://doi.org/10.1038/s41524-019-0210-3.

    Article  CAS  Google Scholar 

  38. Li C, Zhao DH, Long HL, Li M. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021;40(10):2657. https://doi.org/10.1007/s12598-020-01694-w.

    Article  CAS  Google Scholar 

  39. Risch M. Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media. Catalysts. 2017;7(5):154. https://doi.org/10.3390/catal7050154.

    Article  CAS  Google Scholar 

  40. Zagal JH, Specchia S, Atanassov P. Mapping transition metal-MN4 macrocyclic complex catalysts performance for the critical reactivity descriptors. Curr Opin Electrochem. 2021;27: 100683. https://doi.org/10.1016/j.coelec.2020.100683.

    Article  CAS  Google Scholar 

  41. Zhao Z, Chen C, Liu Z, Huang J, Wu M, Liu H, Li Y, Huang Y. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv Mater. 2019;31(31):1808115. https://doi.org/10.1002/adma.201808115.

    Article  CAS  Google Scholar 

  42. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater. 2019;31(6):1802234. https://doi.org/10.1002/adma.201802234.

    Article  CAS  Google Scholar 

  43. Kakaei K, Dorraji M. One-pot synthesis of palladium silver nanoparticles decorated reduced graphene oxide and their application for ethanol oxidation in alkaline media. Electrochim Acta. 2014;143:207. https://doi.org/10.1016/j.electacta.2014.07.134.

    Article  CAS  Google Scholar 

  44. Fu S, Zhu C, Du D, Lin Y. Facile one-step synthesis of three-dimensional Pd-Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl Mater Interfaces. 2015;7(25):13842. https://doi.org/10.1021/acsami.5b01963.

    Article  CAS  Google Scholar 

  45. Wang H, Li Y, Li C, Wang Z, Xu Y, Li X, Xue H, Wang L. Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. J Mater Chem A. 2018;6(36):17514. https://doi.org/10.1039/c8ta06908e.

    Article  CAS  Google Scholar 

  46. Zhang Z, Wang Z, He S, Wang C, Jin M, Yin Y. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem Sci. 2015;6(9):5197. https://doi.org/10.1039/c5sc01787d.

    Article  CAS  Google Scholar 

  47. Zhang J, Xu Y, Zhang B. Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem Commun. 2014;50(88):13451. https://doi.org/10.1039/c4cc03282a.

    Article  CAS  Google Scholar 

  48. Zareie Yazdan-Abad M, Noroozifar M, Modaresi Alam AR, Saravani H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J Mater Chem A. 2017;5(21):10244. https://doi.org/10.1039/c7ta03208k.

    Article  CAS  Google Scholar 

  49. Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J Am Chem Soc. 2018;140(8):2880. https://doi.org/10.1021/jacs.7b12506.

    Article  CAS  Google Scholar 

  50. Zhu C, Shi Q, Fu S, Song J, Du D, Su D, Engelhard MH, Lin Y. Core-shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties. J Mater Chem A. 2018;6(17):7517. https://doi.org/10.1039/c7ta11233e.

    Article  CAS  Google Scholar 

  51. Huang X, Li Y, Chen Y, Zhou E, Xu Y, Zhou H, Duan X, Huang Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew Chem Int Ed. 2013;52(9):2520. https://doi.org/10.1002/anie.201208901.

    Article  CAS  Google Scholar 

  52. Li C, Iqbal M, Jiang B, Wang Z, Kim J, Nanjundan AK, Whitten AE, Wood K, Yamauchi Y. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem Sci. 2019;10(14):4054. https://doi.org/10.1039/c8sc03911a.

    Article  CAS  Google Scholar 

  53. Choi S, Jeong H, Choi KH, Song JY, Kim J. Electrodeposition of triangular Pd rod nanostructures and their electrocatalytic and SERS activities. ACS Appl Mater Interfaces. 2014;6(4):3002. https://doi.org/10.1021/am405601g.

    Article  CAS  Google Scholar 

  54. Xu D, Yan X, Diao P, Yin P. Electrodeposition of vertically aligned palladium nanoneedles and their application as active substrates for surface-enhanced raman scattering. J Phys Chem C. 2014;118(18):9758. https://doi.org/10.1021/jp500667f.

    Article  CAS  Google Scholar 

  55. Li YF, Lv JJ, Zhang M, Feng JJ, Li FF, Wang AJ. A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties. J Electroanal Chem. 2015;738:1. https://doi.org/10.1016/j.jelechem.2014.11.017.

    Article  CAS  Google Scholar 

  56. Duan J, Lyu S, Yao H, Mo D, Chen Y, Sun Y, Maaz K, Maqbool M, Liu J. Controlled structure of electrochemically deposited Pd nanowires in ion-track templates. Nanoscale Res Lett. 2015;10(1):481. https://doi.org/10.1186/s11671-015-1189-4.

    Article  CAS  Google Scholar 

  57. Das AK, Kim NH, Pradhan D, Hui D, Lee JH. Electrochemical synthesis of palladium (Pd) nanorods: an efficient electrocatalyst for methanol and hydrazine electro-oxidation. Compos Part B Eng. 2018;144:11. https://doi.org/10.1016/j.compositesb.2018.02.017.

    Article  CAS  Google Scholar 

  58. Fang Y, Guo S, Zhu C, Dong S, Wang E. Twenty second synthesis of pd nanourchins with high electrochemical activity through an electrochemical route. Langmuir. 2010;26(23):17816. https://doi.org/10.1021/la1036597.

    Article  CAS  Google Scholar 

  59. Jeong H, Kim J. Electrodeposition of nanoflake Pd structures: structure-dependent wettability and SERS activity. ACS Appl Mater Interfaces. 2015;7(13):7129. https://doi.org/10.1021/acsami.5b02113.

    Article  CAS  Google Scholar 

  60. Jia F, Wong KW, Du R. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route. Electrochem Commun. 2009;11(3):519. https://doi.org/10.1016/j.elecom.2008.11.054.

    Article  CAS  Google Scholar 

  61. Xu CW, Wang H, Shen PK, Jiang SP. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater. 2007;19(23):4256. https://doi.org/10.1002/adma.200602911.

    Article  CAS  Google Scholar 

  62. Zhao Y, Qin SJ, Li Y, Deng FX, Liu YQ, Pan GB. Electrodeposition of dendritic Pd nanoarchitectures on n-GaN(0001): nucleation and electrocatalysis for direct formic acid fuel cells. Electrochim Acta. 2014;145:148. https://doi.org/10.1016/j.electacta.2014.09.008.

    Article  CAS  Google Scholar 

  63. Su Y, Prestat E, Hu C, Puthiyapura VK, Neek-Amal M, Xiao H, Huang K, Kravets VG, Haigh SJ, Hardacre C, Peeters FM, Nair RR. Self-limiting growth of two-dimensional palladium between graphene oxide layers. Nano Lett. 2019;19(7):4678. https://doi.org/10.1021/acs.nanolett.9b01733.

    Article  CAS  Google Scholar 

  64. Li C, Jiang B, Miyamoto N, Kim JH, Malgras V, Yamauchi Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J Am Chem Soc. 2015;137(36):11558. https://doi.org/10.1021/jacs.5b06278.

    Article  CAS  Google Scholar 

  65. Iqbal M, Kim J, Yuliarto B, Jiang B, Li C, Dag O, Malgras V, Yamauchi Y. Standing mesochannels: mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions. ACS Appl Mater Interfaces. 2018;10(47):40623. https://doi.org/10.1021/acsami.8b13662.

    Article  CAS  Google Scholar 

  66. An Y, Tian Y, Wei C, Tao Y, Xi B, Xiong S, Feng J, Qian Y. Dealloying: an effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today. 2021;37:101094. https://doi.org/10.1016/j.nantod.2021.101094.

    Article  CAS  Google Scholar 

  67. Fujita T. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Sci Technol Adv Mater. 2017;18(1):724. https://doi.org/10.1080/14686996.2017.1377047.

    Article  CAS  Google Scholar 

  68. Liu Y, Xu C. Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability. Chemsuschem. 2013;6(1):78. https://doi.org/10.1002/cssc.201200752.

    Article  CAS  Google Scholar 

  69. Chen J, Li Y, Lu N, Tian C, Han Z, Zhang L, Fang Y, Qian B, Jiang X, Cui R. Nanoporous PdCe bimetallic nanocubes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media. J Mater Chem A. 2018;6(46):23560. https://doi.org/10.1039/c8ta08445a.

    Article  CAS  Google Scholar 

  70. Sun D, Wang Y, Livi KJT, Wang C, Luo R, Zhang Z, Alghamdi H, Li C, An F, Gaskey B, Mueller T, Hall AS. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano. 2019;13(9):10818. https://doi.org/10.1021/acsnano.9b06019.

    Article  CAS  Google Scholar 

  71. Lu X, Ahmadi M, DiSalvo FJ, Abruña HD. Enhancing the electrocatalytic activity of Pd/M (M=Ni, Mn) nanoparticles for the oxygen reduction reaction in alkaline media through electrochemical dealloying. ACS Catal. 2020;10(10):5891. https://doi.org/10.1021/acscatal.9b05499.

    Article  CAS  Google Scholar 

  72. Shi S, Markmann J, Weissmüller J. Synthesis of uniform bulk nanoporous palladium with tunable structure. Electrochim Acta. 2018;285:60. https://doi.org/10.1016/j.electacta.2018.07.081.

    Article  CAS  Google Scholar 

  73. Gunji T, Wakabayashi RH, Noh SH, Han B, Matsumoto F, DiSalvo FJ, Abruña HD. The effect of alloying of transition metals (M=Fe Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media. Electrochim Acta. 2018;283:1045. https://doi.org/10.1016/j.electacta.2018.06.051.

    Article  CAS  Google Scholar 

  74. Zhang M, Li MP, Yin T, Zhang T. Fabrication of nanoporous bi-metallic Ag-Pd alloys with open pores. Mater Lett. 2016;162:273. https://doi.org/10.1016/j.matlet.2015.10.014.

    Article  CAS  Google Scholar 

  75. Song Y, Zhang X, Yang S, Wei X, Sun Z. Electrocatalytic performance for methanol oxidation on nanoporous Pd/NiO composites prepared by one-step dealloying. Fuel. 2016;181:269. https://doi.org/10.1016/j.fuel.2016.04.086.

    Article  CAS  Google Scholar 

  76. Lim MB, Hanson JL, Vandsburger L, Roder PB, Zhou X, Smith BE, Ohuchi FS, Pauzauskie PJ. Copper- and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires. J Mater Chem A. 2018;6(14):5644. https://doi.org/10.1039/c7ta07324k.

    Article  CAS  Google Scholar 

  77. Kong Q, Feng W, Zhong X, Liu Y, Lian L. Hydrogen absorption/desorption properties of porous hollow palladium spheres prepared by templating method. J Alloys Compd. 2016;664:188. https://doi.org/10.1016/j.jallcom.2015.12.234.

    Article  CAS  Google Scholar 

  78. Li R, Zhang P, Huang Y, Chen C, Chen Q. Facile approach to prepare Pd nanoarray catalysts within porous alumina templates on macroscopic scales. ACS Appl Mater Interfaces. 2013;5(23):12695. https://doi.org/10.1021/am4040762.

    Article  CAS  Google Scholar 

  79. Chen D, Sun P, Liu H, Yang J. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J Mater Chem A. 2017;5(9):4421. https://doi.org/10.1039/c6ta10476b.

    Article  CAS  Google Scholar 

  80. Sanij FD, Balakrishnan P, Leung P, Shah A, Su H, Xu Q. Advanced Pd-based nanomaterials for electro-catalytic oxygen reduction in fuel cells: a review. Int J Hydrogen Energ. 2021;46(27):14596. https://doi.org/10.1016/j.ijhydene.2021.01.185.

    Article  CAS  Google Scholar 

  81. Zong Z, Xu K, Li D, Tang Z, He W, Liu Z, Wang X, Tian Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J Catal. 2018;361:168. https://doi.org/10.1016/j.jcat.2018.02.020.

    Article  CAS  Google Scholar 

  82. Nguyen ATN, Shim JH. Facile one-step synthesis of Ir–Pd bimetallic alloy networks as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. J Electroanal Chem. 2018;827:120. https://doi.org/10.1016/j.jelechem.2018.09.012.

    Article  CAS  Google Scholar 

  83. Wang H, Zhou T, Deng K, Jiao S, Tian W, Xu Y, Li X, Wang Z, Wang L. Mesoporous PdRu nanocrystals for oxygen reduction electrocatalysis. Energy Fuels. 2021;35(16):13382. https://doi.org/10.1021/acs.energyfuels.1c01658.

    Article  CAS  Google Scholar 

  84. Yan Y, Zhan F, Du J, Jiang Y, Jin C, Fu M, Zhang H, Yang D. Kinetically-controlled growth of cubic and octahedral Rh-Pd alloy oxygen reduction electrocatalysts with high activity and durability. Nanoscale. 2015;7(1):301. https://doi.org/10.1039/c4nr04942j.

    Article  CAS  Google Scholar 

  85. Xie Y, Li C, Castillo E, Fang J, Dimitrov N. Nanoporous Pd-Cu thin films as highly active and durable catalysts for oxygen reduction in alkaline media. Electrochim Acta. 2021;385: 138306. https://doi.org/10.1016/j.electacta.2021.138306.

    Article  CAS  Google Scholar 

  86. Sun L, Liao B, Ren X, Li Y, Zhang P, Deng L, Gao Y. Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction. Electrochim Acta. 2017;235:543. https://doi.org/10.1016/j.electacta.2017.03.159.

    Article  CAS  Google Scholar 

  87. Liu S, Xiao W, Wang J, Zhu J, Wu Z, Xin H, Wang D. Ultralow content of Pt on Pd-Co-Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction. Nano Energy. 2016;27:475. https://doi.org/10.1016/j.nanoen.2016.07.038.

    Article  CAS  Google Scholar 

  88. Zhao F, Zheng L, Yuan Q, Yang X, Zhang Q, Xu H, Guo Y, Yang S, Zhou Z, Gu L, Wang X. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv Mater. 2021;33(42):2103383. https://doi.org/10.1002/adma.202103383.

    Article  CAS  Google Scholar 

  89. Yang Y, Xiao W, Feng X, Xiong Y, Gong M, Shen T, Lu Y, Abruna HD, Wang D. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. ACS Nano. 2019;13(5):5968. https://doi.org/10.1021/acsnano.9b01961.

    Article  CAS  Google Scholar 

  90. Guo J, Gao L, Tan X, Yuan Y, Kim J, Wang Y, Wang H, Zeng YJ, Choi SI, Smith SC, Huang H. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew Chem Int Ed. 2021;60(19):10942. https://doi.org/10.1002/anie.202100307.

    Article  CAS  Google Scholar 

  91. Du C, Li P, Yang F, Cheng G, Chen S, Luo W. Monodisperse palladium sulfide as efficient electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces. 2018;10(1):753. https://doi.org/10.1021/acsami.7b16359.

    Article  CAS  Google Scholar 

  92. Vo Doan TT, Wang J, Poon KC, Tan DC, Khezri B, Webster RD, Su H, Sato H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew Chem Int Ed. 2016;55(24):6842. https://doi.org/10.1002/anie.201601727.

    Article  CAS  Google Scholar 

  93. Lüsi M, Erikson H, Piirsoo H-M, Paiste P, Aruväli J, Kikas A, Kisand V, Tamm A, Tammeveski K. Oxygen reduction reaction on PdM/C (M=Pb, Sn, Bi) alloy nanocatalysts. J Electroanal Chem. 2022;917:116391. https://doi.org/10.1016/j.jelechem.2022.116391.

    Article  CAS  Google Scholar 

  94. Liu D, Zeng Q, Hu C, Liu H, Chen D, Han Y, Xu L, Yang J. Core-shell CuPd@NiPd nanoparticles: coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS Catal. 2022;12(15):9092. https://doi.org/10.1021/acscatal.2c02274.

    Article  CAS  Google Scholar 

  95. Rego R, Ferraria AM, Botelho do Rego AM, Oliveira MC. Development of PdP nano electrocatalysts for oxygen reduction reaction. Electrochim Acta. 2013;87:73. https://doi.org/10.1016/j.electacta.2012.08.107.

    Article  CAS  Google Scholar 

  96. Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J. Electrocatalysis of gold-based nanoparticles and nanoclusters. Mater Horiz. 2021;8(6):1657. https://doi.org/10.1039/d0mh01947j.

    Article  CAS  Google Scholar 

  97. Huang S, Lu S, Hu H, Xu F, Li H, Duan F, Zhu H, Gu H, Du M. Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem Eng J. 2021;420:130503. https://doi.org/10.1016/j.cej.2021.130503.

    Article  CAS  Google Scholar 

  98. Shi Q, Zhu C, Bi C, Xia H, Engelhard MH, Du D, Lin Y. Intermetallic Pd3Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. J Mater Chem A. 2017;5(45):23952. https://doi.org/10.1039/c7ta08407b.

    Article  CAS  Google Scholar 

  99. Liu Z, Yang X, Cui L, Shi Z, Lu B, Guo X, Zhang J, Xu L, Tang Y, Xiang Y. High-performance oxygen reduction electrocatalysis enabled by 3D PdNi nanocorals with hierarchical porosity. Part Part Syst Charact. 2018;35(5):1700366. https://doi.org/10.1002/ppsc.201700366.

    Article  CAS  Google Scholar 

  100. Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta. 2012;59:329. https://doi.org/10.1016/j.electacta.2011.10.074.

    Article  CAS  Google Scholar 

  101. Yu H, Zhou T, Wang Z, Xu Y, Li X, Wang L, Wang H. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew Chem Int Ed. 2021;133(21):12134. https://doi.org/10.1002/anie.202101019.

    Article  CAS  Google Scholar 

  102. Zhang Y, Huang B, Shao Q, Feng Y, Xiong L, Peng Y, Huang X. Defect engineering of palladium-tin nanowires enables efficient electrocatalysts for fuel cell reactions. Nano Lett. 2019;19(10):6894. https://doi.org/10.1021/acs.nanolett.9b02137.

    Article  CAS  Google Scholar 

  103. Liang J, Li S, Chen Y, Liu X, Wang T, Han J, Jiao S, Cao R, Li Q. Ultrathin and defect-rich intermetallic Pd2Sn nanosheets for efficient oxygen reduction electrocatalysis. J Mater Chem A. 2020;8(31):15665. https://doi.org/10.1039/d0ta01767a.

    Article  CAS  Google Scholar 

  104. Gao F, Li C, Ren Y, Li B, Lv C, Yang X, Zhang X, Lu Z, Yu X, Li L. High-efficient ultrathin PdCuMo porous nanosheets with abundant defects for oxygen reduction reaction. Chem Eur J. 2022. https://doi.org/10.1002/chem.202201860.

    Article  Google Scholar 

  105. Liu S, Ren H, Yin S, Zhang H, Wang Z, Xu Y, Li X, Wang L, Wang H. Defect-rich ultrathin AuPd nanowires with Boerdijk–Coxeter structure for oxygen reduction electrocatalysis. Chem Eng J. 2022;435: 134823. https://doi.org/10.1016/j.cej.2022.134823.

    Article  CAS  Google Scholar 

  106. Luo M, Sun Y, Wang L, Guo S. Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv Energy Mater. 2017;7(11):1602073. https://doi.org/10.1002/aenm.201602073.

    Article  CAS  Google Scholar 

  107. Cheng H, Yang N, Lu Q, Zhang Z, Zhang H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater. 2018;30(26):1707189. https://doi.org/10.1002/adma.201707189.

    Article  CAS  Google Scholar 

  108. Ge Y, Wang X, Huang B, Huang Z, Chen B, Ling C, Liu J, Liu G, Zhang J, Wang G, Chen Y, Li L, Liao L, Wang L, Yun Q, Lai Z, Lu S, Luo Q, Wang J, Zheng Z, Zhang H. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J Am Chem Soc. 2021;143(41):17292. https://doi.org/10.1021/jacs.1c08973.

    Article  CAS  Google Scholar 

  109. Zhou M, Guo J, Zhao B, Li C, Zhang L, Fang J. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd–Bi nanocatalysts. J Am Chem Soc. 2021;143(38):15891. https://doi.org/10.1021/jacs.1c08644.

    Article  CAS  Google Scholar 

  110. Jiang G, Zhu H, Zhang X, Shen B, Wu L, Zhang S, Lu G, Wu Z, Sun S. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano. 2015;9:11014.

    Article  CAS  Google Scholar 

  111. Huang C, Dong W, Dong C, Wang X, Jia B, Huang F. Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction. Dalton Trans. 2020;49(5):1398. https://doi.org/10.1039/c9dt04570h.

    Article  CAS  Google Scholar 

  112. Yuan X, Wang X, Liu X, Ge H, Yin G, Dong C, Huang F. Ti3+-promoted high oxygen-reduction activity of Pd nanodots supported by black titania nanobelts. ACS Appl Mater Interfaces. 2016;8(41):27654. https://doi.org/10.1021/acsami.6b07062.

    Article  CAS  Google Scholar 

  113. Dong HQ, Chen YY, Han M, Li SL, Zhang J, Li JS, Lan YQ, Dai ZH, Bao JC. Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J Mater Chem A. 2014;2(5):1272. https://doi.org/10.1039/c3ta13585c.

    Article  CAS  Google Scholar 

  114. Erikson H, Sarapuu A, Solla-Gullón J, Tammeveski K. Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts. J Electroanal Chem. 2016;780:327. https://doi.org/10.1016/j.jelechem.2016.09.034.

    Article  CAS  Google Scholar 

  115. Zheng Y, Zhao S, Liu S, Yin H, Chen YY, Bao J, Han M, Dai Z. Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction. ACS Appl Mater Interfaces. 2015;7(9):5347. https://doi.org/10.1021/acsami.5b01541.

    Article  CAS  Google Scholar 

  116. Yun M, Ahmed MS, Jeon S. Thiolated graphene oxide-supported palladium cobalt alloyed nanoparticles as high performance electrocatalyst for oxygen reduction reaction. J Power Sources. 2015;293:380. https://doi.org/10.1016/j.jpowsour.2015.05.094.

    Article  CAS  Google Scholar 

  117. Li Z, Li J, Jiang K, Yuan S, Yu D, Wei H, Shi Z, Li X, Chu H. PdCoNi alloy nanoparticles decorated, nitrogen-doped carbon nanotubes for highly active and durable oxygen reduction electrocatalysis. Chem Eng J. 2021;411:128527. https://doi.org/10.1016/j.cej.2021.128527.

    Article  CAS  Google Scholar 

  118. Chao G, Zhang L, Xue T, Tian J, Fan W, Liu T. Lattice-strain and electron-density modulation of palladium nanocatalysts for highly efficient oxygen reduction. J Colloid Interface Sci. 2021;602:159. https://doi.org/10.1016/j.jcis.2021.05.177.

    Article  CAS  Google Scholar 

  119. Huang L, Zheng X, Gao G, Zhang H, Rong K, Chen J, Liu Y, Zhu X, Wu W, Wang Y, Wang J, Dong S. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J Am Chem Soc. 2021;143(18):6933. https://doi.org/10.1021/jacs.1c00656.

    Article  CAS  Google Scholar 

  120. Lu Y, Wang J, Peng Y, Fisher A, Wang X. Highly efficient and durable pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv Energy Mater. 2017;7(21):1700919. https://doi.org/10.1002/aenm.201700919.

    Article  CAS  Google Scholar 

  121. Karuppasamy L, Gurusamy L, Anandan S, Liu CH, Wu JJ. Defect-enriched heterointerfaces N-MoO2-Mo2C supported Pd nanocomposite as a novel multifunctional electrocatalyst for oxygen reduction reaction and overall water splitting. Mater Today Chem. 2022;24:100799. https://doi.org/10.1016/j.mtchem.2022.100799.

    Article  CAS  Google Scholar 

  122. Choi CH, Park SH, Woo SI. Oxygen reduction activity of Pd–Mn3O4 nanoparticles and performance enhancement by voltammetrically accelerated degradation. Phys Chem Chem Phys. 2012;14(19):6842. https://doi.org/10.1039/c2cp24128e.

    Article  CAS  Google Scholar 

  123. Sun H, Tung CW, Qiu Y, Zhang W, Wang Q, Li Z, Tang J, Chen HC, Wang C, Chen HM. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J Am Chem Soc. 2022;144(3):1174. https://doi.org/10.1021/jacs.1c08890.

    Article  CAS  Google Scholar 

  124. Chen B, Humayun M, Li Y, Zhang H, Sun H, Wu Y, Wang C. Constructing hierarchical fluffy CoO-Co4N@NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis. ACS Sustain Chem Eng. 2021;9(42):14180. https://doi.org/10.1021/acssuschemeng.1c04674.

    Article  CAS  Google Scholar 

  125. Xiao W, Cordeiro MAL, Gao G, Zheng A, Wang J, Lei W, Gong M, Lin R, Stavitski E, Xin HL, Wang D. Atomic rearrangement from disordered to ordered Pd–Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy. 2018;50:70. https://doi.org/10.1016/j.nanoen.2018.05.032.

    Article  CAS  Google Scholar 

  126. Maiti K, Balamurugan J, Peera SG, Kim NH, Lee JH. Highly active and durable core-shell fct-PdFe@Pd nanoparticles encapsulated ng as an efficient catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces. 2018;10(22):18734. https://doi.org/10.1021/acsami.8b04060.

    Article  CAS  Google Scholar 

  127. Batchelor TAA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019;3(3):834. https://doi.org/10.1016/j.joule.2018.12.015.

    Article  CAS  Google Scholar 

  128. Guo Y, Zhang L, XiLi D, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  129. Tian X, Lu XF, Xia BY, Lou XW. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule. 2020;4(1):45. https://doi.org/10.1016/j.joule.2019.12.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52172058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Xian Guo or Ru-Guang Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CJ., Shan, GC., Guo, CX. et al. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction. Rare Met. 42, 1778–1799 (2023). https://doi.org/10.1007/s12598-022-02234-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02234-4

Keywords

Navigation