Skip to main content
Log in

Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues. In recent years, with the rapid development of emerging catalysts, significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy. However, their selectivity and efficiency of the products are poor. Rare earth (RE) can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures. However, there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes. Single atom catalysts (SACs) provide clear active sites and 100% atomic utilization, which is conducive to exploring the regulatory mechanisms of RE. Therefore, this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion. Firstly, a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE, with a focus on the atomic interface regulation mechanism of RE. Meanwhile, the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications. Finally, the challenges faced by RE in energy conversion, as well as future research directions and prospects, were pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

    Article  CAS  Google Scholar 

  2. Sun, L. J.; Su, H. W.; Liu, Q. Q.; Hu, J.; Wang, L. L.; Tang, H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022, 41, 2387–2404.

    Article  CAS  Google Scholar 

  3. Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175.

    Article  Google Scholar 

  4. Painuly, J. P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89.

    Article  Google Scholar 

  5. Tilman, D.; Socolow, R.; Foley, J. A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; Williams, R. Beneficial biofuels-the food, energy, and environment trilemma: Exploiting multiple feedstocks, under new policies and accounting rules, to balance biofuel production, food security, and greenhouse-gas reduction. Science 2009, 325, 270–271.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, W.; Jia, B. H.; Liu, X.; Ma, T. Y. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 5–34.

    Article  CAS  Google Scholar 

  7. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

  8. Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

    Article  CAS  Google Scholar 

  9. Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565.

    Article  CAS  Google Scholar 

  10. Sun, Z. Y.; Wang, S.; Chen, W. X. Metal single-atom catalysts for selective hydrogenation of unsaturated bonds. J. Mater. Chem. A 2021, 9, 5296–5319.

    Article  CAS  Google Scholar 

  11. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, J.; Chen, X. Y.; Xu, Y. S.; Du, Y. P.; Yan, C. H. Ultrathin 2D rare-earth nanomaterials: Compositions, syntheses, and applications. Adv. Mater. 2020, 32, 1806461.

    Article  CAS  Google Scholar 

  13. Donati, F.; Pivetta, M.; Wolf, C.; Singha, A.; Wäckerlin, C.; Baltic, R.; Fernandes, E.; De Groot, J. G.; Ahmed, S. L.; Persichetti, L. et al. Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Lett. 2021, 21, 8266–8273.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. X.; Chen, W. F.; Li, J. F.; Cui, C. M. Rare-earth-catalyzed regioselective hydrosilylation of aryl-substituted internal alkenes. ACS Catal. 2018, 8, 2230–2235.

    Article  CAS  Google Scholar 

  15. Zhang, F. X.; Hu, P. Q.; Zhang, Z. M.; Gong, J. H.; Wang, D. H. Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation. Rare Met. 2023, 42, 606–613.

    Article  CAS  Google Scholar 

  16. Pan, X. J.; Yang, Z. Q.; Xu, Y.; Wang, M.; Huang, X. W.; Feng, Z. Y.; Zhong, Q.; Peng, X. L. Separation and purification of Yb2O3 by ion exchange chromatography and preparation of ultra-high purity Yb2O3. Rare Met. 2023, 42, 2725–2735.

    Article  CAS  Google Scholar 

  17. Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

    Article  CAS  PubMed  Google Scholar 

  18. Stojadinović, S.; Radić, N.; Grbić, B.; Maletić, S.; Stefanov, P.; Pačevski, A.; Vasilić, R. Structural, photoluminescent, and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Appl. Surf. Sci. 2016, 370, 218–228.

    Article  Google Scholar 

  19. Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.

    Article  PubMed  Google Scholar 

  20. Bingham, S.; Daoud, W. A. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem. 2011, 21, 2041–2050.

    Article  CAS  Google Scholar 

  21. Zhu, F. L.; Meng, Y. S.; Huang, X. Y. Electro-catalytic degradation properties of Ti/SnO2-Sb electrodes doped with different rare earths. Rare Met. 2016, 35, 412–418.

    Article  CAS  Google Scholar 

  22. Ma, Y.; Mu, G. M.; Miao, Y. J.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Zeng, W. Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction. Rare Met. 2022, 41, 844–850.

    Article  CAS  Google Scholar 

  23. Liang, Z.; Yin, L. L.; Yin, H.; Yin, Z. Y.; Du, Y. P. Rare earth element based single-atom catalysts: Synthesis, characterization, and applications in photo/electro-catalytic reactions. Nanoscale Horiz. 2022, 7, 31–40.

    Article  CAS  Google Scholar 

  24. Zhang, N. Q.; Yan, H.; Li, L. C.; Wu, R.; Song, L. Y.; Zhang, G. Z.; Liang, W. J.; He, H. Use of rare earth elements in single-atom site catalysis: A critical review—Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare Earths. 2021, 39, 233–242.

    Article  CAS  Google Scholar 

  25. Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y. W.; Fu, G. T. Rare-earth single-atom catalysts: A new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.

    Article  CAS  Google Scholar 

  26. Chen, W. P.; Liao, P. Q.; Jin, P. B.; Zhang, L.; Ling, B. K.; Wang, S. C.; Chan, Y. T.; Chen, X. M.; Zheng, Y. Z. The gigantic {Ni36Gd102} hexagon: A sulfate-templated “saar-of-david” far photocatalytic CO2 reduction and magnetic cooling. J. Am. Chem. Soc. 2020, 142, 4663–4670.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D. et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944.

    Article  CAS  Google Scholar 

  28. Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem.—Eur. J. 2012, 18, 7543–7551.

    Article  CAS  PubMed  Google Scholar 

  29. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    Article  CAS  Google Scholar 

  30. Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mat. 2023, 35, 2302485

    Article  CAS  Google Scholar 

  31. Xiao, Y. J.; Zhang, X.; Yan, D. K.; Deng, J. B.; Chen, M. J.; Zhang, H. L.; Sun, W. H.; Zhao, J. P.; Li, Y. Defect engineering of W6+-doped NiO for high-performance black smart windows. Nano Res., in press, https://doi.org/10.1007/s12274-023-6106-z.

  32. Ding, Y. J.; Huang, Y. C.; Li, Y. J.; Zhang, T.; Wu, Z. S. Regulating surface electron structure of PtNi nanoalloy via boron doping for high-current-density Li-O2 batteries with low overpotential and long-life cyclability. SmartMat, in press, https://doi.org/10.1002/smm2.1150.

  33. Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te- mediated electro-driven oxygen evolution reaction. Naao Reo. Eaergy 2022, 1, 9120029.

    Google Scholar 

  34. Chen, Q. Y.; Gao, G. Y.; Zhang, Y. Z.; Li, Y. N.; Zhu, H. Y.; Zhu, P. F.; Qu, Y.; Wang, G. F.; Qin, W. P. Dual functions of CO2 molecular activation and 4f levels as electron transport bridges in erbium single atom composite photocatalysts therefore enhancing visible-light photoactivities. J. Mater. Chem. A 2021, 9, 15820–15826.

    Article  CAS  Google Scholar 

  35. Zhou, X. H.; Su, T. M.; Jiang, Y. X.; Qin, Z. Z.; Ji, H. B.; Guo, Z. H. CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 2016, 153, 10–20.

    Article  CAS  Google Scholar 

  36. Fan, Z. Y.; Shi, J. W.; Gao, C.; Gao, G.; Wang, B. R.; Wang, Y.; He, C.; Niu, C. M. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance. Chem. Eng. J. 2018, 348, 820–830.

    Article  CAS  Google Scholar 

  37. Si, X. Z.; Pan, X. Z.; Xue, J. T.; Yao, Q. X.; Huang, X. Q.; Duan, W. Z.; Qiu, Y.; Su, J.; Cao, M. L.; Li, J. Robust acid–base Ln-MOFs: Searching for efficient catalysts in cycloaddition of CO2 with epoxides and cascade deacetalization-knoevenagel reactions. RSC Adv. 2022, 12, 33501–33509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun 2023, 14, 3767.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, L.; Liu, H.; Huang, S.; Zhong, S. L. Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets. Rare Met. 2021, 40, 728–735.

    Article  Google Scholar 

  40. Sarkar, R.; Kumari, S.; Kundu, T. K. Density functional theory based studies on the adsorption of rare-earth ions from hydrated nitrate salt solutions on g-C3N4 monolayer surface. J. Mol. Graph. Model. 2020, 97, 107577.

    Article  CAS  PubMed  Google Scholar 

  41. Kang, H. C.; Peng, H.; Kang, Y. M.; Hao, Y. X.; Li, L. F.; Liu, F. Q.; Xin, H. Y.; Wang, W.; Lei, Z. Q. Nitrogen-doped carbon-encapsulated SmFeOx bimetallic nanoparticles as high-performance electrocatalysts for oxygen reduction reaction. J. Taiwan Inst. Chem. E. 2022, 141, 104579.

    Article  CAS  Google Scholar 

  42. Wang, S. G.; Zhou, P.; Zhou, L.; Lv, F.; Sun, Y. J.; Zhang, Q. H.; Gu, L.; Yang, H.; Guo, S. J. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 2021, 21, 4262–4269.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. B.; Gong, H. S.; Ye, G. L.; Fei, H. L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022, 41, 1703–1726.

    Article  CAS  Google Scholar 

  44. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  45. Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

    Article  CAS  Google Scholar 

  46. Nagai, Y.; Hirabayashi, T. Dohmae, K. Takagi, N. Minami, T. Shinjoh, H.; Matsumoto, S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal. 2006, 242, 103–109.

    Article  CAS  Google Scholar 

  47. Zhang, W. H.; Ding, S. J.; Zhang, Q. S.; Yi, H.; Liu, Z. X.; Shi, M. L.; Guan, R. F.; Yue, L. Rare earth element-doped porous In2O3 nanosheets for enhanced gas-sensing performance. Rare Met. 2021, 40, 1662–1668.

    Article  CAS  Google Scholar 

  48. Zhu, Y. G.; Shang, C. Q.; Wang, Z. Y.; Zhang, J. Q.; Yang, M. Y.; Cheng, H.; Lu, Z. G. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Met. 2021, 40, 90–95.

    Article  Google Scholar 

  49. Sun, L. J.; Su, H. W.; Xu, D. F.; Wang, L. L.; Tang, H.; Liu, Q. Q. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022, 41, 2063–2073.

    Article  CAS  Google Scholar 

  50. Zhou, X. L.; Liu, H.; Xia, B. Y.; Ostrikov, K. Zheng, Y; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

    Article  CAS  Google Scholar 

  51. Yang, Y. P.; Liu, C. H.; Song, T. L.; Li, M. F.; Zhao, Z. P. Surface engineering of 1D nanocatalysts for value-added selective electrooxidation of organic chemicals. Nano Res., in press, https://doi.org/10.1007/s12274-023-5944-z.

  52. Tang, J.; Chen, Z. L.; Yu, X. L.; Tang, W. Z. Rare earth elements (lanthanum, cerium, and erbium) doped black oxygen deficient Bi2O3-Bi2O3−x as novel photocatalysts enhanced photocatalytic performance. J. Rare Earths 2022, 40, 1053–1062.

    Article  CAS  Google Scholar 

  53. Chen, P.; Lei, B.; Dong, X. A.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La-N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L. F.; Meng, J. L.; Yao, F.; Liu, X. J.; Meng, J.; Zhang, H. J. Strong-correlated behavior of 4f electrons and 4f5d hybridization in PrO2. Sci. Rep. 2018, 8, 15995.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang, L. F.; Meng, J. L.; Liu, X. J.; Yao, F.; Meng, J.; Zhang, H. J. Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R = rare earth): Synergistic effects of local structures and 4f electrons. Phys. Rev. B 2017, 96, 045114.

    Article  Google Scholar 

  56. Han, Z. D.; Zhao, Y.; Gao, G. Y.; Zhang, W. Y.; Qu, Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Erbium single atom composite photocatalysts for reduction of CO2 under visible light: CO2 molecular activation and 4f levels as an electron transport bridge. Small 2021, 17, 2102089.

    Article  CAS  Google Scholar 

  57. Wang, P.; Shi, W. W.; Jin, N.; Liu, Z. Y.; Wang, Y. C.; Cai, T.; Hills-Kimball, K.; Yang, H. J.; Yang, X. T.; Jin, Y. D. et al. Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution. Nano Res. 2023, 16, 2271–2277.

    Article  Google Scholar 

  58. Nazarov, A. N.; Tiagulskyi, S. I.; Tyagulskyy, I. P.; Lysenko, V. S.; Rebohle, L.; Lehmann, J.; Prucnal, S.; Voelskow, M.; Skorupa, W. The effect of rare-earth clustering on charge trapping and electroluminescence in rare-earth implanted metal-oxide-semiconductor light-emitting devices. J. Appl. Phys. 2010, 107, 123112.

    Article  Google Scholar 

  59. Sun, D.; Chen, Y. J.; Yu, X. Y.; Yin, Y. J.; Tian, G. H. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen. Chem. Eng. J. 2023, 462, 142084.

    Article  CAS  Google Scholar 

  60. Ichihara, F.; Sieland, F.; Pang, H.; Philo, D.; Duong, A. T.; Chang, K.; Kako, T.; Bahnemann, D. W.; Ye, J. H. Photogenerated charge carriers dynamics on La- and/or Cr-doped SrTiO3 nanoparticles studied by transient absorption spectroscopy. J. Phys. Chem. C 2020, 124, 1292–1302.

    Article  CAS  Google Scholar 

  61. Bhatt, H.; Goswami, T.; Yadav, D. K.; Ghorai, N.; Shukla, A.; Kaur, G.; Kaur, A.; Ghosh, H. N. Ultrafast hot electron transfer and trap-state mediated charge carrier separation toward enhanced photocatalytic activity in g-C3N4/ZnIn2S4 heterostructure. J. Phys. Chem. Lett. 2021, 12, 11865–11872.

    Article  CAS  PubMed  Google Scholar 

  62. Tong, J.; Huan, J.; Yu, X.; Cheng, J. H.; Zhang, Z. J.; Xing, J. J.; Zhao, J. T.; Yang, X. X. Significantly enhanced mechanoluminescence from Nb5+ co-doped ZrO2:Sm3+ via a high valence ion doping strategy. J. Mater. Chem. C 2023, 11, 11597–11605.

    Article  CAS  Google Scholar 

  63. Li, M.; Wu, X. D.; Liu, K.; Zhang, Y. F.; Jiang, X. C.; Sun, D. M.; Tang, Y. W.; Huang, K.; Fu, G. T. Nitrogen vacancies enriched Cedoped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. J. Energy Chem. 2022, 69, 506–515.

    Article  CAS  Google Scholar 

  64. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062

    Article  Google Scholar 

  65. Liu, X. F.; Luo, Y. N.; Ling, C. C.; Shi, Y. B.; Zhan, G. M.; Li, H.; Gu, H. Y.; Wei, K.; Guo, F. R.; Ai, Z. H. et al. Rare earth La single atoms supported MoO3−x for efficient photocatalytic nitrogen fixation. App. Catal. B Environ. 2022, 301, 120766.

    Article  CAS  Google Scholar 

  66. Ci, H. M.; Shi, Z. X.; Wang, M. L.; He, Y.; Sun, J. Y. A review in rational design of graphene toward advanced Li-S batteries. Nano Res. Energy 2023, 2, e9120054.

    Article  Google Scholar 

  67. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  CAS  Google Scholar 

  68. Yu, Z. Z.; Yang, K.; Yu, C. L.; Lu, K. Q.; Huang, W. Y.; Xu, L.; Zou, L. X.; Wang, S. B.; Chen, Z.; Hu, J. et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.

    Article  CAS  Google Scholar 

  69. Wang, Y.; You, L. M.; Zhou, K. Origin of the N-coordinated singleatom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction. Chem. Sci. 2021, 12, 14065–14073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, 9120017.

    Article  Google Scholar 

  71. Yang, D. R.; Wang, X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67

    Article  CAS  Google Scholar 

  72. Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. M.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, 9120015.

    Google Scholar 

  73. Feng, Q.; Chang, Z.; Hao, Y.; Liu, C. L.; Yang, Z. X.; Su, H. R.; Tan, W. W.; Xu, L. J. Highly efficient Ni-Mo-P composite rare earth elements electrode as electrocatalytic cathode for oil-based drill sludge treatment. J. Environ. Manage. 2022, 324, 116328.

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

    Article  Google Scholar 

  75. Li, L.; Zhang, Z. C. Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022, 41, 3943–3945.

    Article  CAS  Google Scholar 

  76. Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metalbased electrocatalysts for CO2 electroreduction. Rare Met. 2021, 40, 3019–3037.

    Article  CAS  Google Scholar 

  77. Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

    Article  CAS  Google Scholar 

  78. Sandrini, G.; Matthijs, H. C. P.; Verspagen, J. M. H.; Muyzer, G.; Huisman, J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 2014, 8, 589–600.

    Article  CAS  PubMed  Google Scholar 

  79. Li, Q.; Wang, Y. C.; Zeng, J. Z.; Zhao, X.; Chen, C.; Wu, Q. M.; Chen, L. M.; Chen, Z. Y.; Lei, Y. P. Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 3442–3453.

    Article  CAS  Google Scholar 

  80. König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 2019, 19, 135–160.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S. W.; Gao, Q.; Xu, C.; Jiang, S.; Zhang, M. Y.; Yin, X. J.; Peng, H. Q.; Liu, B.; Song, Y. F. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Res., in press, https://doi.org/10.1007/s12274-023-6019-x.

  83. Bhowmik, A.; Vegge, T.; Hansen, H. A. Descriptors and thermodynamic limitations of electrocatalytic carbon dioxide reduction on rutile oxide surfaces. ChemSusChem 2216, 9, 3230–3243.

    Article  Google Scholar 

  84. Wang, Z. Q.; Chu, D. R.; Zhou, H.; Wu, X. P.; Gong, X. Q. Role of low-coordinated Ce in hydride formation and selective hydrogenation reactions on CeO2 surfaces. ACS Catal. 2022, 12, 624–632.

    Article  CAS  Google Scholar 

  85. Hu, F. Z.; Liao, L. L.; Chi, B. Z.; Wang, H. M. Rare earth praseodymium-based single atom catalyst for high performance CO2 reduction reaction. Chem. Eng. J. 2022, 436, 135271.

    Article  CAS  Google Scholar 

  86. Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

    Article  CAS  Google Scholar 

  87. Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 2017, 114, E8812–E8821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, C.; Zhao, D. H.; Long, H. L.; Li, M. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021, 40, 2657–2689.

    Article  CAS  Google Scholar 

  89. Liu, K. Y.; Chen, P. W.; Sun, Z. Y.; Chen, W. X.; Zhou, Q.; Gao, X. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 2023, 16, 10724–10741.

    Article  CAS  Google Scholar 

  90. Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

    Article  CAS  Google Scholar 

  91. Wang, X. T.; Lin, X. F.; Yu, D. S. Meta-containing covalent organic framework: A new type of photo/electrocatalyst. Rare Met. 2022, 41, 1160–1175.

    Article  CAS  Google Scholar 

  92. Li, J. C.; Qin, X. P.; Xiao, F.; Liang, C. H.; Xu, M. J.; Meng, Y.; Sarnello, E.; Fang, L. Z.; Li, T.; Ding, S. C. et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett. 2021, 21, 4508–4515.

    Article  CAS  PubMed  Google Scholar 

  93. Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B Environ. 2022, 316, 121607.

    Article  CAS  Google Scholar 

  94. Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.

    Article  Google Scholar 

  95. Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single- atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 59, 7384–7389.

    Article  Google Scholar 

  96. Ma, M.; Kumar, A.; Wang, D. N.; Wang, Y. Y.; Jia, Y.; Zhang, Y.; Zhang, G. X.; Yan, Z. F.; Sun, X. M. Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 2020, 274, 119091.

    Article  CAS  Google Scholar 

  97. Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2219, 12, 3508–3514.

    Article  Google Scholar 

  98. Yi, Y. H.; Wang, X. X.; Wang, L.; Yan, J. H.; Zhang, J. L.; Guo, H. C. Plasma-triggered CH3OH/NH3 coupling reaction for synthesis of nitrile compounds. Acta. Phys. Chim. Sin. 2018, 34, 247–255.

    CAS  Google Scholar 

  99. Cheng, D. D.; Meng, B.; Li, C.; Wang, X. B.; Meng, X. X.; Sunarso, J.; Tan, X. Y.; Liu, S. M. Single- step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition. Int. J. Hydrogen. Energy 2020, 45, 7423–7432.

    Article  CAS  Google Scholar 

  100. Ma, R. Y.; Zou, J. W.; Han, Z. Q.; Yu, K.; Wu, S.; Li, Z. F.; Liu, S. W.; Niu, S. L.; Horwath, W. R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biol. 2021, 27, 855–867.

    Article  CAS  Google Scholar 

  101. Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A. Energy efficiency improvements in ammonia production-perspectives and uncertainties. Energy 2005, 30, 2487–2504.

    Article  CAS  Google Scholar 

  102. Drahl, C. PALLADIUM’S HIDDEN TALENT: Structures support previously suspected pathway for making CARBON-FLUORINE BONDS. Chem. Eng. News 2008, 86, 53–56.

    Article  Google Scholar 

  103. Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials, and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

    Article  CAS  PubMed  Google Scholar 

  104. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; Macfarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  105. Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

    Article  CAS  Google Scholar 

  106. Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

    Article  CAS  Google Scholar 

  107. Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.

    Article  Google Scholar 

  108. Han, Y.; Wang, Y. L.; Ma, T. Z.; Li, W.; Zhang, J. L.; Zhang, M. H. Mechanistic understanding of Cu-based bimetallic catalysts. Front. Chem. Sci. Eng. 2020, 14, 689–748.

    Article  CAS  Google Scholar 

  109. Liu, T. Y.; Qu, X. Y.; Zhang, Y. Q.; Wang, X. H.; Dang, Q.; Li, X. X.; Wang, B. J.; Tang, S. B.; Luo, Y.; Jiang, J. Regulating the charge densities of s-block calcium single-atom site catalysts for efficient N2 activation and reduction. Chem. Eng. J. 2023, 457, 141187.

    Article  CAS  Google Scholar 

  110. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Article  Google Scholar 

  111. Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

    Article  CAS  Google Scholar 

  112. Hering-Junghans, C. Metal- free nitrogen fixation at boron. Angew. Chem., Int. Ed. 2018, 57, 6738–6740.

    Article  CAS  Google Scholar 

  113. Koper, M. T. M. A basic solution. Nat. Chem. 2013, 5, 255–256.

    Article  CAS  PubMed  Google Scholar 

  114. Su, L. X.; Jin, Y. M.; Gong, D.; Ge, X.; Zhang, W.; Fan, X. R.; Luo, W. The role of discrepant reactive intermediates on Ru–Ru2P heterostructure for pH-universal hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2023, 62, e202215585.

    Article  CAS  Google Scholar 

  115. Shi, Q. R.; Zhu, C. Z.; Zhong, H.; Su, D.; Li, N.; Engelhard, M. H.; Xia, H. B.; Zhang, Q.; Feng, S.; Beckman, S. P. et al. Nanovoid incorporated IrxCu metallic aerogels for oxygen evolution reaction catalysis. ACS Energy Lett. 2018, 3, 2038–2044.

    Article  CAS  Google Scholar 

  116. Chen, P. Z.; Zhou, T. P.; Zhang, M. X.; Tong, Y.; Zhong, C. A.; Zhang, N.; Zhang, L. D.; Wu, C. Z.; Xie, Y. 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 2017, 29, 1701584

    Article  Google Scholar 

  117. Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

    Article  CAS  Google Scholar 

  118. Lemmon, J. P. Energy: Reimagine fuel cells. Nature 2015, 525, 447–449.

    Article  CAS  PubMed  Google Scholar 

  119. Liu, S.; Wang, X.; Yu, H. G.; Wu, Y. P.; Li, B.; Lan, Y. Q.; Wu, T.; Zhang, J.; Li, D. S. Two new pseudo-isomeric nickel(II) metal-organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021, 40, 489–498.

    Article  CAS  Google Scholar 

  120. Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795–3802.

    Article  CAS  Google Scholar 

  121. Li, D. G.; Wang, C.; Strmcnik, D. S.; Tripkovic, D. V.; Sun, X. L.; Kang, Y. J.; Chi, M. F.; Snyder, J. D.; van der Vliet, D.; Tsai, Y. et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: The oxygen reduction reaction case. Energy Environ. Sci. 2014, 7, 4061–4069.

    Article  CAS  Google Scholar 

  122. Andreadis, G.; Tsiakaras, P. Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem. Eng. Sci. 2006, 61, 7497–7508.

    Article  CAS  Google Scholar 

  123. Hao, Y. F.; Wang, X. D.; Shen, J. F.; Yuan, J. H.; Wang, A. J.; Niu, L.; Huang, S. T. One- pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol. Nanotechnology 2016, 27, 145602.

    Article  PubMed  Google Scholar 

  124. Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

    Article  CAS  Google Scholar 

  125. Bhunia, K.; Khilari, S.; Pradhan, D. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Dalton Trans. 2017, 46, 15558–15566.

    Article  CAS  PubMed  Google Scholar 

  126. Neto, A. O.; Watanabe, A. Y.; Brandalise, M.; Tusi, M. M.; de S. Rodrigues, R. M.; Linardi, M.; Spinacé, E. V.; Forbicini, C. A. L. G. O. Preparation and characterization of Pt-rare earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation. J. Alloys Compd. 2009, 476, 288–291

    Article  Google Scholar 

  127. Guney, M. S. Solar power and application methods. Renew. Sustain. Energy Rev. 2016, 57, 776–785.

    Article  Google Scholar 

  128. Jebasingh, V. K.; Herbert, G. M. J. A review of solar parabolic trough collector. Renew. Sustain. Energy Rev. 2016, 54, 1085–1091.

    Article  Google Scholar 

  129. Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.

    Article  CAS  PubMed  Google Scholar 

  130. Wang, F. F.; Li, Q.; Xu, D. S. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700529.

    Article  Google Scholar 

  131. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  132. Chen, F.; Huang, H. W.; Guo, L.; Zhang, Y. H.; Ma, T. Y. The role of polarization in photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 10061–10073.

    Article  CAS  Google Scholar 

  133. Shah, J. H.; Huang, B. H.; Idris, A. M.; Liu, Y.; Malik, A. S.; Hu, W. J.; Zhang, Z. D.; Han, H. X.; Li, C. Regulation of ferroelectric polarization to achieve efficient charge separation and transfer in particulate RuO2/BiFeO3 for high photocatalytic water oxidation activity. Small 2020, 16, 2003361.

    Article  CAS  Google Scholar 

  134. Jiang, Y.; Chen, H. Y.; Li, J. Y.; Liao, J. F.; Zhang, H. H.; Wang, X. D.; Kuang, D. B. Z- scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.

    Article  CAS  Google Scholar 

  135. Chakrabortty, S.; Kumar, R.; Nayak, J.; Jeon, B. H.; Dargar, S. K.; Tripathy, S. K.; Pal, P.; Ha, G. S.; Kim, K. H.; Jasiński, M. Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilization. Renew. Sustain. Energy Rev. 2023, 182, 113417.

    Article  CAS  Google Scholar 

  136. Chen, X. Q.; Wei, Z. H.; Li, Y. Q.; Sun, Q.; Ding, N.; Zheng, L. R.; Liu, S. H.; Chen, W. X.; Li, S. H.; Pang, S. P. Modulating the conduction band of MOFs by introducing tiny TiO2 nanoparticles for enhanced photocatalytic performance: Importance of the loading position. Inorg. Chem. 2023, 62, 10572–10581.

    Article  CAS  PubMed  Google Scholar 

  137. Wei, Z. H.; Song, S. J.; Gu, H. F.; Li, Y. Q.; Sun, Q.; Ding, N.; Tang, H.; Zheng, L. R.; Liu, S. H.; Li, Z. X. et al. Enhancing the photocatalytic activity of zirconium-based metal–organic frameworks through the formation of mixed-valence centers. Adv. Sci. 2023, 10, 2303206.

    Article  CAS  Google Scholar 

  138. Mekhilef, S.; Faramarzi, S. Z.; Saidur, R.; Salam, Z. The application of solar technologies for sustainable development of agricultural sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594.

    Article  Google Scholar 

  139. Osterloh, F. R. Photocatalysis versus photosynthesis: A sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Eaergy Lett. 2017, 2, 445–453.

    Article  CAS  Google Scholar 

  140. Wang, Z. H.; Shi, R.; Lu, S. Y.; Zhang, K.; Zhang, T. R. Atom manufacturing of photocatalyst towards solar CO2 reduction. Rep. Prog. Phys. 2022, 85, 026501.

    Article  CAS  Google Scholar 

  141. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    Article  CAS  Google Scholar 

  142. Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

    Article  CAS  Google Scholar 

  143. Schmitt-Rink, S.; Varma, C. M.; Levi, A. F. J. Excitation mechanisms and optical properties of rare-earth ions in semiconductors. Phys. Rev. Lett. 1991, 66, 2782–2785.

    Article  CAS  PubMed  Google Scholar 

  144. Egranov, A. V.; Sizova, T. Y.; Shendrik, R. Y.; Smirnova, N. A. Instability of some divalent rare earth ions and photochromic effect. J. Phys. Chem. Solids 2016, 90, 7–15.

    Article  CAS  Google Scholar 

  145. Yu, Y. G.; Chen, G.; Zhou, Y. S.; Han, Z. H. Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review. J. Rare Earths 2015, 33, 453–462.

    Article  CAS  Google Scholar 

  146. Kildgaard, J. V.; Hansen, H. A.; Vegge, T. DFT + U study of strain-engineered CO2 reduction on a CeO2−x (111) facet. J. Phys. Chem. C 2021, 125, 14221–14227

    Article  CAS  Google Scholar 

  147. Zhao, Y.; Han, Z. D.; Gao, G. Y.; Zhang, W. Y.; Qu, Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Dual functions of CO2 molecular activation and 4f levels as electron transport bridge in dysprosium single atom composite photocatalysts with enhanced visible-light photoactivities. Adv. Funct. Mater. 2021, 31, 2104976.

    Article  CAS  Google Scholar 

  148. Li, Y. L.; Qu, Y.; Wang, G. F. Europium single atom based heterojunction photocatalysts with enhanced visible-light catalytic activity. J. Mater. Chem. A 2022, 10, 5990–5997.

    Article  Google Scholar 

  149. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  150. Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624–2643.

    Article  CAS  Google Scholar 

  151. Kim, S.; Kim, K. H.; Oh, C.; Zhang, K.; Park, J. H. Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 2022, 4, 21–44.

    Article  CAS  Google Scholar 

  152. Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

    Article  CAS  Google Scholar 

  153. Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

    Article  CAS  Google Scholar 

  154. Yang, L. H.; Choi, C.; Hong, S.; Liu, Z. M.; Zhao, Z. Q.; Yang, M. M.; Shen, H. D.; Robertson, A. W.; Zhang, H.; Lo, T. W. B. et al. Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 10910–10913.

    Article  CAS  Google Scholar 

  155. Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Met. 2020, 39, 841–849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21875021 and 22075024) and the Beijing Natural Science Foundation (No. 2212018). All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxing Chen, Shenghua Li or Siping Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Z., Sun, Z., Wei, Z. et al. Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion. Nano Res. 17, 3493–3515 (2024). https://doi.org/10.1007/s12274-023-6287-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6287-5

Keywords

Navigation