Skip to main content

Advertisement

Log in

Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Developing catalysts with high intrinsic activity toward oxygen evolution reaction (OER) has paramount importance to meet the ever-increasing quest for sustainability demands for green energy solutions but challenging. Herein, a one-step synthesized hydrangea flower-like metal-organic framework (MOF) by dysprosium (Dy)-doped Fe-MOF is reported (Dy0.05Fe-MOF/NF). Impressively, the obtained electrocatalyst possesses optimal OER intrinsic activity, showing a low overpotential of 258 mV at 100 mA·cm−2, superior to the capability of the noble metal RuO2. In addition, an overpotential of 318 mV is needed for Dy0.05Fe-MOF/NF to drive 500 mA·cm−2. The remarkable performance of Dy0.05Fe-MOF/NF can be explained by the surface-active electron density modulation of Fe sites, because the doping of Dy with a lower electronegativity than doping of Fe could donate electrons to the neighboring Fe atoms, resulting in profoundly improved OER performance. Beyond that, this work not only offers a perspective to understand the OER mechanism of rare earth doping, but also guides us to design more ideal electrocatalyst and beyond.

Graphic abstract

摘要

为了满足对可持续性绿色能源解决方案需求的日益增长, 开发具有高活性的析氧反应 (OER) 催化剂具有极其重要的意义, 且存在挑战性。本文通过一步合成法, 制备了镝(Dy)掺杂Fe-MOF的绣球花状MOFs (Dy0.05Fe-MOF/NF)。该材料在100 mA·cm-2下, 过电位仅为258 mV, 优于贵金属RuO2, 仅需318 mV的过电位即可达到500 mA·cm-2。Dy0.05Fe-MOF/NF优异的电催化性能可以归因于Dy掺杂对材料表面活性位点(Fe) 的电子密度的调整。相比于Fe, Dy具有更低的电负性, 能将更多的电子提供给邻近的Fe原子, 从而改善了Fe基材料的OER活性。此外, 这项工作不仅能帮助我们理解稀土掺杂OER催化剂的工作机理, 也将有望指导我们设计出更理想的OER电催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3

References

  1. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    CAS  Google Scholar 

  2. Wang Q, Shang L, Waterhouse DS, Zhang T, Waterhouse G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat. 2021;2(2):154.

    Google Scholar 

  3. Li L, Wang P, Shao Q, Huang X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev. 2020;49(10):3072.

    CAS  Google Scholar 

  4. Gao RJ, Zou JJ. Towards designing efficient catalyst for hydrogen oxidation reaction. Rare Met. 2020;39(10):1107.

    CAS  Google Scholar 

  5. Wang LP, Shen QX, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Metals. 2019;43(4):367.

    Google Scholar 

  6. Zheng D, Jing Z, Zhao Q, Kim Y, Li P, Xu H, Li Z, Lin J. Efficient Co-doped pyrrhotite Fe0.95 S1.05 nanoplates for electrochemical water splitting. Chem Eng J. 2020;402:125069.

    CAS  Google Scholar 

  7. Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small. 2020;16(2):1905779.

    CAS  Google Scholar 

  8. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85 Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01541-y.

    Article  Google Scholar 

  9. Liu H, Lu X, Hu Y, Chen R, Zhao P, Wang L, Zhu G, Ma L, Jin Z. CoxFeyN nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. J Mater Chem A. 2019;7(20):12489.

    CAS  Google Scholar 

  10. Ye Z, Qin C, Ma G, Peng X, Li T, Li D, Jin Z. Cobalt-iron oxide nanoarrays supported on carbon fiber paper with high stability for electrochemical oxygen evolution at large current densities. ACS Appl Mater Inter. 2018;10(46):39809.

    CAS  Google Scholar 

  11. Wang X, Xiao H, Li A, Li Z, Liu S, Zhang Q, Gong Y, Zheng L, Zhu Y, Chen C, Wang D, Peng Q, Gu L, Han X, Li J, Li Y. Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for efficient oxygen evolution reactions. J Am Chem Soc. 2018;140(45):15336.

    CAS  Google Scholar 

  12. Rui K, Zhao G, Lao M, Cui P, Zheng X, Zheng X, Zhu J, Huang W, Dou SX, Sun W. Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution. Nano Lett. 2019;19(12):8447.

    CAS  Google Scholar 

  13. Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y. Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horiz. 2019;6(4):684.

    CAS  Google Scholar 

  14. Xu H, Cao J, Shan C, Wang B, Xi P, Liu W, Tang Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew Chem Int Ed Engl. 2018;57(28):8654.

    CAS  Google Scholar 

  15. Liao Z, Wang Y, Wang Q, Cheng Y, Xiang Z. Bimetal-phthalocyanine based covalent organic polymers for highly efficient oxygen electrode. Appl Catal B: Enviro. 2019;243:204.

    CAS  Google Scholar 

  16. Yang CC, Zai SF, Zhou YT, Du L, Jiang Q. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv Funct Mater. 2019;29(27):1901949.

    Google Scholar 

  17. Kim BJ, Fabbri E, Abbott DF, Cheng X, Clark AH, Nachtegaal M, Borlaf M, Castelli IE, Graule T, Schmidt TJ. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J Am Chem Soc. 2019;141(13):5231.

    CAS  Google Scholar 

  18. Zhang HL, Zhai YQ, Qin L, Ungur L, Nojiri H, Zheng YZ. Single-molecule toroic design through magnetic exchange coupling. Matter. 2020;2(6):1481.

    Google Scholar 

  19. Chen F, Wang YM, Guo W, Yin XB. Color-tunable lanthanide metal–organic framework gels. Chem Sci. 2019;10(6):1644.

    CAS  Google Scholar 

  20. Yi X, Dong W, Zhang X, Xie J, Huang Y. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem. 2016;408(30):8805.

    CAS  Google Scholar 

  21. Khan MA, Islam MU, Ishaque M, Rahman IZ. Magnetic and dielectric behavior of terbium substituted Mg1−xTbxFe2O4 ferrites. J Alloy Compd. 2012;519:156.

    CAS  Google Scholar 

  22. Abbas MK, Khan MA, Mushtaq F, Warsi MF, Sher M, Shakir I, Aboud MFA. Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram Int. 2017;43(7):5524.

    CAS  Google Scholar 

  23. Qian Q, Li Y, Liu Y, Yu L, Zhang G. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv Mater. 2019;31(23):1901139.

    Google Scholar 

  24. Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud KP, Bjorgen M, Zecchina A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem Commun. 2004;20:2300.

    Google Scholar 

  25. Yang Q, Cui Y, Li Q, Cai J, Wang D, Feng L. Nanosheet-derived ultrafine CoRuOx@NC nanoparticles with a core@shell structure as bifunctional electrocatalysts for electrochemical water splitting with high current density or low power input. ACS Sustain Chem Eng. 2020;8(32):12089.

    CAS  Google Scholar 

  26. Anjum MAR, Lee MH, Lee JS. Boron and nitrogen co-doped molybdenum carbide nanoparticles imbedded in BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 2018;8(9):8296.

    CAS  Google Scholar 

  27. Park SW, Kim I, Oh SI, Kim JC, Kim DW. Carbon-encapsulated NiFe nanoparticles as a bifunctional electrocatalyst for high-efficiency overall water splitting. J Catal. 2018;366:266.

    CAS  Google Scholar 

  28. Li FL, Shao Q, Huang X, Lang JP. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed Engl. 2018;57(7):1888.

    CAS  Google Scholar 

  29. Wang D, Li Q, Han C, Lu Q, Xing Z, Yang X. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat Commun. 2019;10(1):3899.

    Google Scholar 

  30. Tang C, Zhang R, Lu W, He L, Jiang X, Asiri AM, Sun X. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater. 2017;29(2):1602441.

    Google Scholar 

  31. Wu Y, Liu Y, Li GD, Zou X, Lian X, Wang D, Sun L, Asefa T, Zou X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy. 2017;35:161.

    CAS  Google Scholar 

  32. Wang Y, Zhu Y, Zhao S, She S, Zhang F, Chen Y, Williams T, Gengenbach T, Zu L, Mao H, Zhou W, Shao Z, Wang H, Tang J, Zhao D, Selomulya C. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter. 2020;3(6):2124.

    Google Scholar 

  33. Liu T, Li P, Yao N, Kong T, Cheng G, Chen S, Luo W. Self-Sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv Mater. 2019;31(21):1806672.

    Google Scholar 

  34. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater. 2014;26(32):5702.

    CAS  Google Scholar 

  35. Tiwari JN, Dang NK, Sultan S, Thangavel P, Jeong HY, Kim KS. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat Sustain. 2020;3(7):556.

    Google Scholar 

  36. Liu M, Zheng W, Ran S, Boles ST, Lee LYS. Overall water-splitting electrocatalysts based on 2D CoNi-metal-organic frameworks and its derivative. Adv Mater Interfaces. 2018;5(21):1800849.

    Google Scholar 

  37. Zhang X, Liu Q, Shi X, Asiri AM, Sun X. An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorg Chem Front. 2018;5(6):1405.

    CAS  Google Scholar 

  38. Xie H, Lan C, Chen B, Wang F, Liu T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020;13(12):3321.

    CAS  Google Scholar 

  39. Yang H, Long Y, Zhu Y, Zhao Z, Ma P, Jin J, Ma J. Crystal lattice distortion in ultrathin Co(OH)2 nanosheets inducing elongated Co–OOH bonds for highly efficient oxygen evolution reaction. Green Chem. 2017;19(24):5809.

    CAS  Google Scholar 

  40. Liang C, Zou P, Nairan A, Zhang Y, Liu J, Liu K, Hu S, Kang F, Fan HJ, Yang C. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy & Environ Sci. 2020;13(1):86.

    CAS  Google Scholar 

  41. Jiang X, Tang M, Tang L, Jiang N, Zheng Q, Xie F, Lin D. Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochim Acta. 2021;379:138149.

    Google Scholar 

  42. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4(7):3979.

    CAS  Google Scholar 

  43. Zhang B, Zhang L, Akiyama K, Bingham PA, Zhou Y, Kubuki S. Self-assembly of nanosheet-supported Fe-MOF heterocrystals as a reusable catalyst for boosting advanced oxidation performance via radical and nonradical pathways. ACS Appl Mater Inter. 2021;13(19):22694.

    CAS  Google Scholar 

  44. Puente-Martínez DE, Díaz-Guillén JA, Montemayor SM, Díaz-Guillén JC, Burciaga-Díaz O, Bazaldúa-Medellín ME, Díaz-Guillén MR, Fuentes AF. High ionic conductivity in CeO2 SOFC solid electrolytes; effect of Dy doping on their electrical properties. Inter J Hydrog Energy. 2020;45(27):14062.

    Google Scholar 

  45. Tholkappiyan R, Vishista K. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: an XRD, FT-IR, XPS and VSM study. Appl Surf Sci. 2015;351:1016.

    CAS  Google Scholar 

  46. Li F, Bu Y, Lv Z, Mahmood J, Han GF, Ahmad I, Kim G, Zhong Q, Baek JB. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst. Small. 2017;13(40):1701167.

    Google Scholar 

  47. Chauhan L, Singh N, Dhar A, Kumar H, Kumar S, Sreenivas K. Structural and electrical properties of Dy3+ substituted NiFe2O4 ceramics prepared from powders derived by combustion method. Ceram Int. 2017;43(11):8378.

    CAS  Google Scholar 

  48. Hu X, Luo G, Guo X, Zhao Q, Wang R, Huang G, Jiang B, Xu C, Pan F. Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Sci Bull. 2021;66(7):708.

    CAS  Google Scholar 

  49. Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nano Energy. 2016;1:16184.

    CAS  Google Scholar 

  50. Gao X, Li X, Yu Y, Kou Z, Wang P, Liu X, Zhang J, He J, Mu S, Wang J. Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. Nano Energy. 2021;85:105961.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201910).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Yu Xie or Wen Zeng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Mu, GM., Miao, YJ. et al. Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction. Rare Met. 41, 844–850 (2022). https://doi.org/10.1007/s12598-021-01851-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01851-9

Navigation