Skip to main content
Log in

Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The non-noble metal oxygen reduction reaction (ORR) catalysts prepared by carbonization of metal–organic framework (MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due to their unique intrinsic advantages such as high catalytic activity, low price, simple synthesis and good adaptability. Different from the study of traditional high active noble metal catalysts, this review systematically summarizes recent developments on non-noble metal (Fe, Co, Cu, Ni, Mn and Mo) ORR catalysts prepared by various MOFs carbonization in different metal centers. The effects of synthesis strategies and pyrolysis conditions on the catalyst properties are discussed. Meanwhile, the key parameters of catalytic performances (including active sites, dispersed state and specific surface area) are discussed and the prospect is presented. It is expected that this review will provide effective guidance for future studies on carbonized non-noble MOFs for ORR electrochemical catalyst.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yaghi OM, Li GM, Li HL. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703.

    Article  CAS  Google Scholar 

  2. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc-air battery. Rare Met. 2020;39(7):815.

    Article  CAS  Google Scholar 

  3. Kang ZX, Fan LL, Sun DF. Recent advances and challenges of metal organic framework membranes for gas separation. J Mater Chem A. 2017;5(21):10073.

    Article  CAS  Google Scholar 

  4. Wu MX, Yang YW. Metal organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.

    Article  Google Scholar 

  5. Zhou FL, Bao HF, Wu XS, Tao YL, Qin C, Su ZM, Kang ZH. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl Mater Interfaces. 2019;11(46):43206.

    Article  Google Scholar 

  6. Li M, Song MY, Wu GT, Tang ZY, Sun YF, He YB, Li JH, Li L, Gu HS, Liu X, Ma C, Peng ZF, Ai ZQ, Lewis D. A free standing and self-healable 2D supramolecular material based on hydrogen bonding: a nanowire array with sub 2 nm resolution. Small. 2017;13(21):1604077.

    Article  Google Scholar 

  7. Qasem NAA, Ben-Mansour R, Habib MA. An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl Energy. 2018;210(15):317.

    Article  CAS  Google Scholar 

  8. Wang C, An B, Lin WB. Metal–organic frameworks in solid-gas phase catalysis. ACS Catal. 2019;9(1):130.

    Article  CAS  Google Scholar 

  9. Ferey G. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040.

    Article  CAS  Google Scholar 

  10. Park KS, Ni Z, Adrien P, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA. 2006;103(27):10186.

    Article  CAS  Google Scholar 

  11. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC. Stable metal organic frameworks: design, synthesis, and applications. Adv Mater. 2018;30(37):1704303.

    Article  Google Scholar 

  12. Sun L, Campbell MG, Dincă M. Electrically conductive porous metal–organic frameworks. Angew Chem Int Ed. 2016;55(11):3566.

    Article  CAS  Google Scholar 

  13. Miner E, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincã M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun. 2016;7(1):10942.

    Article  CAS  Google Scholar 

  14. Tripathy R, Samantara A, Behera JN. A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans. 2019;48(28):10557.

    Article  Google Scholar 

  15. Fu SF, Zhu CZ, Song JH, Du D, Lin YH. Metal–organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater. 2017;7(19):1700363.

    Article  Google Scholar 

  16. Wen XD, Zhang QQ, Guan JQ. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev. 2020;409:213214.

    Article  CAS  Google Scholar 

  17. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.

    Article  CAS  Google Scholar 

  18. Gao LQ, Xiao ML, Jin Z, Liu CP, Ge JJ, Xing W. Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe–N–C catalyst. J Energy Chem. 2019;35:17.

    Article  Google Scholar 

  19. Zhang C, Zhang W, Zheng WT. Transition metal-nitrogen-carbon active site for oxygen reduction electrocatalysis: beyond the fascinations of TM-N4. ChemCatChem. 2019;11(12):655.

    Article  CAS  Google Scholar 

  20. Wang Y, Li J, Wei ZD. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J Mater Chem A. 2018;6(18):8194.

    Article  CAS  Google Scholar 

  21. Liu YJ, Xie XL, Zhu GX, Mao Y, Ju SX, Shen XP, Pang H. Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. J Mater Chem A. 2019;7(26):15851.

    Article  CAS  Google Scholar 

  22. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414.

    Article  CAS  Google Scholar 

  23. Cao H, Xia GJ, Chen JW, Yan HM, Huang Z, Wang YG. Mechanistic insight into oxygen reduction reaction on Mn1–N4/C single atom catalyst: the role of solvent environment. J Phys Chem C. 2020;124(13):7287.

    Article  CAS  Google Scholar 

  24. Zhong GY, Xu SR, Liu L, Zheng CZ, Dou JJ, Wang FY, Fu XB, Liao WB, Wang HJ. Effect of experimental operations on the limiting current density of oxygen reduction reaction evaluated by rotating-disk electrode. ChemElectroChem. 2020;7(5):1107.

    Article  CAS  Google Scholar 

  25. Shao MH, Chang QW, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev. 2016;116(6):3594.

    Article  CAS  Google Scholar 

  26. Shao YY, Dodelet JP, Wu G, Zelenay P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater. 2019;31(31):1807615.

    Article  Google Scholar 

  27. Chung H, Cullen D, Higgins D, Sneed B, Holby E, More K, Zelenay P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science. 2017;357(6350):479.

    Article  CAS  Google Scholar 

  28. Kattel S, Atanassovc P, Kiefer B. A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Phys Chem Chem Phys. 2014;16(27):13800.

    Article  CAS  Google Scholar 

  29. Lai QX, Zheng LR, Liang YY, He J, Zhao J, Chen J. Metal–organic-framework-derived Fe–N/C electrocatalyst with five coordinated Fe–Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017;7(3):1655.

    Article  CAS  Google Scholar 

  30. Niu YL, Huang XQ, Hu WH. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J Power Sources. 2016;332:305.

    Article  CAS  Google Scholar 

  31. Li ZT, Sun HD, Wei LQ, Jiang WJ, Wu MB, Hu JS. Lamellar metal organic framework derived Fe–N–C non-noble electrocatalysts with bimodal porosity for efficient oxygen reduction. ACS Appl Mater Interfaces. 2017;9(6):5272.

    Article  CAS  Google Scholar 

  32. Zhou ZX, He F, Shen YF, Chen XH, Yang YR, Liu SQ, Mori T, Zhang YJ. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem Commun. 2017;53(12):2044.

    Article  CAS  Google Scholar 

  33. Song CS, Wu SK, Shen XP, Miao XL, Ji ZY, Yuan AH, Xu KQ, Liu MM, Xie XL, Kong LR, Zhu GX, Shah SA. Metal–organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J Colloid Interface Sci. 2018;524(15):92.

    Google Scholar 

  34. Shah SSA, Najam T, Cheng C, Peng LS, Xiang R, Zhang L, Deng JH, Ding W, Wei ZD. Exploring Fe–Nx for peroxide reduction: template-free synthesis of FeNx traumatized mesoporous carbon nanotubes as an ORR catalyst in acidic and alkaline solutions. Chem Eur J. 2018;24(42):10630.

    Article  CAS  Google Scholar 

  35. Deng YJ, Chi B, Li J, Wang GH, Zheng L, Shi XD, Cui ZM, Du L, Liao SJ, Zang KT, Luo J, Hu YF, Sun XL. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv Energy Mater. 2019;9(13):1802856.

    Article  Google Scholar 

  36. Chen XD, Wang N, Shen K, Xie YK, Tan YP, Li YW. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl Mater Interfaces. 2019;11(29):25976.

    Article  CAS  Google Scholar 

  37. Jina HH, Zhou H, He DP, Wang ZH, Wu QL, Liang QR, Liu SL, Mu SC. MOF-derived 3D Fe–N–S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl Catal B. 2019;250(5):143.

    Article  Google Scholar 

  38. Guo DK, Han SC, Wang JC, Zhu YF. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Appl Surf Sci. 2018;434(15):1266.

    Article  CAS  Google Scholar 

  39. Gao SY, Fan BF, Feng R, Ye CL, Wei XJ, Xu J, Bu XH. N-doped-carbon-coated Fe3O4 from metal–organic framework as efficient electrocatalyst for ORR. Nano Energy. 2017;40:462.

    Article  CAS  Google Scholar 

  40. Yang WX, Zhang YL, Liu SJ, Chen LL, Jia JB. In-situ forming Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Comm. 2017;53(96):12934.

    Article  CAS  Google Scholar 

  41. Yang WX, Zhang YL, Liu XJ, Chen LL, Liu MC, Jia JB. Polymerization-dissolution strategy to prepare Fe, N, S tri-doped carbon nanostructures for Zn–air batteries. Carbon. 2019;147:83.

    Article  CAS  Google Scholar 

  42. Huang XX, Yang ZY, Dong B, Wang YZ, Tang TY, Hou YL. In-situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale. 2017;9(24):8102.

    Article  CAS  Google Scholar 

  43. Zheng L, Dong YY, Chi B, Cui ZM, Deng YJ, Shi XD, Du L, Liao SJ. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small. 2019;15(4):1803520.

    Article  Google Scholar 

  44. Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang BS, Zhang Q, Titirici MM, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater. 2016;28(32):6845.

    Article  CAS  Google Scholar 

  45. Tan B, Luo H, Xie ZL. Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C3N4 nanosheet with enhancing electrochemical performance. Chemistryselect. 2018;3(23):6440.

    Article  CAS  Google Scholar 

  46. Fu SF, Zhu CZ, Su D, Song JH, Yao SY, Feng S, Engelhard M, Du D, Lin YH. Porous carbon-hosted atomically dispersed iron–nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small. 2018;14(12):1703118.

    Article  Google Scholar 

  47. Yang Q, Xiao ZC, Kong DB, Zhang TL, Duan XG, Zhou SK, Niu Y, Shen YD, Sun HQ, Wang SB, Zhi LJ. New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy. 2019;66:104096.

    Article  CAS  Google Scholar 

  48. Zhong GH, Liu DX, Zhang JY. Applications of porous metal–organic framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Cryst Growth Des. 2018;18(12):7730.

    Article  CAS  Google Scholar 

  49. Seo YK, Yoon JW, Lee JS, Lee U, Hwang YK, Jun CH, Horcajada P, Serre C, Chang JS. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater. 2012;157(15):137.

    Article  CAS  Google Scholar 

  50. Skobelev I, Sorokin A, Kovalenko K, Fedin V, Kholdeeva O. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal. 2013;298:61.

    Article  CAS  Google Scholar 

  51. Han YJ, Zhai JF, Zhanga LL, Dong SJ. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale. 2016;8(2):1033.

    Article  CAS  Google Scholar 

  52. Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):361.

    Article  CAS  Google Scholar 

  53. Cao L, Zhou XH, Li ZH, Su KM, Cheng BW. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. J Power Sources. 2019;43(15):376.

    Article  Google Scholar 

  54. Peng HL, Liu FF, Liu XJ, Liao SJ, You CH, Tian XL, Nan HX, Luo F, Song HY, Fu ZY, Huang PY. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 2014;4(10):3797.

    Article  CAS  Google Scholar 

  55. Sanetuntikul J, Shanmugam S. High pressure pyrolyzed non-precious oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells. Nanoscale. 2015;7(17):7644.

    Article  CAS  Google Scholar 

  56. Yan XC, Dong LD, Huang YC, Jia Y, Zhang LZ, Shen SH, Chen J, Yao XD. Probing the active sites of carbon-encapsulated cobalt nanoparticles for oxygen reduction. Small Methods. 2019;3(9):1800439.

    Article  Google Scholar 

  57. Zhao WP, Wan G, Peng CL, Sheng HP, Wen JG, Chen HG. Key single-atom electrocatalysis in metal–organic framework (MOF)-derived bifunctional catalysts. Chemsuschem. 2018;11(19):3473.

    Article  CAS  Google Scholar 

  58. Cheng G, Liu GL, Liu P, Chen L, Han S, Han JX, Ye F, Song W, Lan B, Sun M, Yu L. Nitrogen-doped ketjenblack carbon supported Co3O4 nanoparticles as a synergistic electrocatalyst for oxygen reduction reaction. Front Chem. 2019;7:766.

    Article  CAS  Google Scholar 

  59. Qu HJ, Gao JJ, Wen YR, Shang B, Wang JQ, Lin X, Wang Y. Platinum cluster/nanoparticle on CoO nanosheets with coupled atomic structure and high electrocatalytic durability. ACS Appl Energy Mater. 2018;1(5):1840.

    Article  Google Scholar 

  60. Liu J, Bao HL, Zhang BS, Hua QF, Shang MF, Wang JQ, Jiang LH. Geometric occupancy and oxidation state requirements of cations in cobalt oxides for oxygen reduction reaction. ACS Appl Mater Interfaces. 2019;11(13):12525.

    Article  CAS  Google Scholar 

  61. Feng XH, Wu T, Carreon MA. Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (dimethyl sulfoxide) as solvent and kinetic transformation studies. J Cryst Growth. 2016;455:152.

    Article  CAS  Google Scholar 

  62. Liu H, Wang MQ, Chen ZY, Chen H, Xu MW, Bao SJ. Design and synthesis of Co–N–C porous catalysis derived from metal organic complexes for high effective ORR. Dalton Trans. 2017;46(45):15646.

    Article  CAS  Google Scholar 

  63. Ma L, Wang R, Li YH, Liu XF, Zhang QQ, Dong XY, Zang SQ. Apically Co-nanoparticles-wrapped nitrogen doped carbon nanotubes from a single-source MOF for efficient oxygen reduction. J Mater Chem A. 2018;6(47):24071.

    Article  CAS  Google Scholar 

  64. Xu CY, Lin Z, Zhao D, Sun YL, Zhong YJ, Ning JQ, Zheng CC, Zhang ZY, Hu Y. Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J Mater Sci. 2019;54(7):5412.

    Article  CAS  Google Scholar 

  65. Guo HL, Feng QC, Zhu JX, Xu JS, Li QQ, Liu SL, Xu KW, Zhang C, Liu TX. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J Mater Chem A. 2019;7(8):3664.

    Article  CAS  Google Scholar 

  66. Ding DN, Shen K, Chen XD, Chen HR, Chen JY, Fan T, Wu RF, Li YW. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018;8(9):7879.

    Article  CAS  Google Scholar 

  67. Qi CL, Zhang L, Xu GC, Sun ZP, Zhao AH, Jia DZ. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions. Appl Surf Sci. 2018;427:319.

    Article  CAS  Google Scholar 

  68. Zhang MD, Dai QB, Zheng HG, Chen MD, Dai LM. Novel MOF-derived Co@N–C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater. 2018;30(10):1705431.

    Article  Google Scholar 

  69. Li M, Bai L, Wu SJ, Wen XD, Guan JQ. Co/CoOx nanoparticles embedded onto carbon for efficient catalysis of oxygen evolution and oxygen reduction reactions. Chemsuschem. 2018;11(10):1722.

    Article  CAS  Google Scholar 

  70. Li JJ, Xia W, Tang J, Tan HB, Wang JY, Kaneti YV, Bando Y, Wang T, He JP, Yamauchi Y. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co–Nx/C electrocatalysts for oxygen reduction. Nanoscale Horiz. 2019;4(4):1006.

    Article  CAS  Google Scholar 

  71. Wu ZF, Tan B, Ma W, Xiong WW, Xie ZL, Huang XY. Mg2+ incorporated Co-based MOF precursors for hierarchical CNT-containing porous carbons with ORR activity. Dalton Trans. 2018;47(8):2810.

    Article  CAS  Google Scholar 

  72. Liang ZZ, Zhang CC, Yuan HT, Zhang W, Zheng HQ, Cao R. PVP-assisted transformation of metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem Commun. 2018;54(54):7519.

    Article  CAS  Google Scholar 

  73. Guan BY, Yu L, Lou XW. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv Sci. 2017;4(10):1700247.

    Article  Google Scholar 

  74. Chen XD, Shen K, Chen JY, Huang BB, Ding DN, Zhang L, Li YW. Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chem Eng J. 2017;330(15):736.

    Article  CAS  Google Scholar 

  75. Cai SC, Wang R, Yourey W, Li JS, Zhang HN, Tang HL. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co–N–C@graphene. Sci Bull. 2019;64(14):968.

    Article  CAS  Google Scholar 

  76. Guo J, Gadipelli S, Yang YC, Li ZG, Lu Y, Brett D, Guo ZX. An efficient carbon-based ORR catalyst from low temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J Mater Chem A. 2019;7(8):3544.

    Article  CAS  Google Scholar 

  77. Yi XR, He XB, Yin FX, Chen BH, Li GR, Yin HQ. Co–CoO–Co3O4/N-doped carbon derived from metal–organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn–air battery. Electrochim Acta. 2019;295:966.

    Article  CAS  Google Scholar 

  78. Park H, Oh S, Lee S, Choi S, Oh M. Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl Catal B. 2019;246:322.

    Article  CAS  Google Scholar 

  79. Bhattacharyya S, Konkena B, Jayaramulu K, Maji TK. Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J Mater Chem A. 2017;5(26):13573.

    Article  CAS  Google Scholar 

  80. Shah SSA, Peng LS, Najam T, Cheng C, Wu GP, Nie Y, Ding W, Qi XQ, Chen SG, Wei ZD. Monodispersed Co in mesoporous polyhedrons: fine-tuning of ZIF-8 structure with enhanced oxygen reduction activity. Electrochim Acta. 2017;251:498.

    Article  CAS  Google Scholar 

  81. Li WX, Yu B, Wang XQ, Wang B, Zhang XJ, Yuang DX, Wang ZG, Chen YF. Encapsulating hollow (Co, Fe)P nanoframes into N, P-codoped graphene aerogel for highly efficient water splitting. J Power Sources. 2020;456:228015.

    Article  CAS  Google Scholar 

  82. Wang ZG, Liu JB, Hao X, Wang Y, Chen YF, Li PJ, Dong MD. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J Chem. 2020;44(31):13377.

    Article  CAS  Google Scholar 

  83. Zhang W, Jiang XF, Wang XB, Kaneti YV, Chen YX, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed. 2017;56(29):8435.

    Article  CAS  Google Scholar 

  84. Wang R, Dong XY, Du J, Zhao JY, Zang SQ. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater. 2017;30(6):1703711.

    Article  Google Scholar 

  85. Li JS, Zhou N, Song JY, Fu L, Yan J, Tang YG, Wang HY. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al–air battery. ACS Sustain Chem Eng. 2018;6(1):413.

    Article  Google Scholar 

  86. Xie YC, Zhang C, He XQ, Su JW, Parker White T, Griep M, Lin J. Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Appl Surf Sci. 2019;464:344.

    Article  CAS  Google Scholar 

  87. Lai Q, Zhu J, Zhao Y, Liang Y, He J, Chen J. Electrocatalysts: mOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn–air batteries. Small. 2017;13(30):1700740.

    Article  Google Scholar 

  88. Zhao J, Li C, Liu R. Designed echinops-like Ni@NiNC as efficient bifunctional oxygen electrocatalyst for zinc-air battery. ChemElectroChem. 2019;6(2):342.

    Article  CAS  Google Scholar 

  89. Yan W, Cao X, Wang R, Sha Y, Cui P, Cui S. S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. J Solid State Chem. 2019;275:167.

    Article  CAS  Google Scholar 

  90. Tyagi A, Kar KK, Yokoi H. Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: boosting the ORR performance in alkaline and acidic media. J Colloid Interf Sci. 2020;571:285.

    Article  CAS  Google Scholar 

  91. Ji LQ, Yang J, Zhang ZY, Qian Y, Su Y, Han M, Liu HK. Enhanced catalytic performance for oxygen reduction reaction derived from nitrogen-rich tetrazolate-based heterometallic metal–organic frameworks. Cryst Growth Des. 2019;19(5):2991.

    Article  CAS  Google Scholar 

  92. Najam T, Cai X, Aslam MK, Tufail MK, Shah SSA. Nano-engineered directed growth of Mn3O4 quasinanocubes on N-doped polyhedrons: efficient electrocatalyst for oxygen reduction reaction. Int J Hydrog Energ. 2020;45(23):12903.

    Article  CAS  Google Scholar 

  93. Amiinu IS, Pu Z, Liu X, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv Funct Mater. 2017;27(44):1702300.

    Article  Google Scholar 

  94. Li JJ, Xia W, Wang T, Zheng LR, Lai Y, Pan JJ, Jiang C, Song L, Wang MY, Zhang HT, Chen N, He JP. A facile way to construct effective Cu–Nx active sites for oxygen reduction reaction. Chem Eur J. 2020;26(18):4070.

    Article  CAS  Google Scholar 

  95. Li F, Han G, Noh H, Kim S, Lu Y, Jeong H, Fu Z, Baek J. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci. 2018;11:2263.

    Article  CAS  Google Scholar 

  96. Zhao X, Liu X, Huang B, Wang P, Pei Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni Co, and Fe). J Mater Chem A. 2019;7(42):24583.

    Article  CAS  Google Scholar 

  97. Gao QQ. A DFT study of the ORR on M–N3 (M = Mn, Fe Co, Ni, or Cu) co-doped graphene with moiety-patched defects. Ionics. 2020;26(5):2453.

    Article  CAS  Google Scholar 

  98. Kattel S, Wang G. A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J Mater Chem A. 2013;1(36):10790.

    Article  CAS  Google Scholar 

  99. Wang MQ, Ye C, Wang M, Li TH, Yu YN, Bao SJ. Synthesis of M (Fe3C Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Mater. 2018;11:112.

    Article  Google Scholar 

  100. Jin K, Chu A, Park J, Jeong D, Jerng S, Sim U, Jeong H, Lee C, Park Y, Yang K, Pradhan G, Kim D, Sung N, Kim S, Nam K. Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci Rep. 2015;5(1):10279.

    Article  Google Scholar 

  101. Zhang B, Cheng G, Lan B, Zheng X, Sun M, Ye Y, Yu L, Cheng X. Crystallization design of MnO2 via acid towards better oxygen reduction activity. Cryst Eng Comm. 2016;18(36):6895.

    Article  CAS  Google Scholar 

  102. Li T, Xue B, Wang B, Guo G, Han D, Yan Y, Dong A. Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J Am Chem Soc. 2017;139(35):12133.

    Article  CAS  Google Scholar 

  103. Tang Q, Jiang L, Liu J, Wang S, Sun G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 2014;4(2):457.

    Article  CAS  Google Scholar 

  104. Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small. 2019;15(14):1805511.

    Article  Google Scholar 

  105. Xu X, Xu H, Cheng D. Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale. 2019;11(42):20228.

    Article  CAS  Google Scholar 

  106. Hao Y, Gong P, Xu LC, Pu J, Wang L, Huang LF. Contrasting oxygen reduction reactions on zero- and one dimensional defects of MoS2 for versatile applications. ACS Appl Mater Interfaces. 2019;11(49):46327.

    Article  CAS  Google Scholar 

  107. Wang ZG, Li Q, Xu HX, Dahl-Petersen C, Yang Q, Cheng DJ, Cao DP, Besenbacher F, Lauritsen J, Helveg S, Dong MD. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.

    Article  CAS  Google Scholar 

  108. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 2017;9(4):43.

    Article  Google Scholar 

  109. Wu M, Hu X, Li C, Li J, Zhou H, Zhang X, Liu R. Encapsulation of metal precursor within ZIFs for bimetallic N-doped carbon electrocatalyst with enhanced oxygen reduction. Int J Hydrog Energy. 2018;43(31):14701.

    Article  CAS  Google Scholar 

  110. Wang N, Li Y, Guo Z, Li H, Hayase S, Ma T. Synthesis of Fe, Co incorporated in P-doped porous carbon using a metal–organic framework (MOF) precursor as stable catalysts for oxygen reduction reaction. J Electrochem Soc. 2018;165(12):G3080.

    Article  CAS  Google Scholar 

  111. Dong Z, Liu G, Zhou S, Zhang Y, Zhang W, Fan A, Zhang X, Dai X. Restructured Fe–Mn alloys encapsulated by N-doped carbon nanotubes catalysts derived from bimetallic MOF for enhanced oxygen reduction reaction. ChemCatChem. 2018;10(23):5475.

    Article  CAS  Google Scholar 

  112. Xia W, Li J, Wang T, Song L, Guo H, Gong H, Jiang C, Gao B, He J. A synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from two-dimensional metal–organic framework and their enhanced performance in oxygen reduction reaction. Chem Commun. 2018;54(31):1623.

    Article  CAS  Google Scholar 

  113. Li ZH, He HY, Cao HB, Sun SM, Diao WL, Gao DL, Lu PL, Zhang SS, Guo Z, Li MJ, Liu RJ, Ren DH, Liu CM, Zhang Y, Yang Z, Jiang JK, Zhang GJ. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl Catal B. 2019;240:112.

    Article  CAS  Google Scholar 

  114. Xu Y, Huang Z, Wang B, Liang Z, Zhang C, Wang Y, Zhang W, Zheng H, Cao R. A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem Commun. 2019;55(98):14805.

    Article  CAS  Google Scholar 

  115. Wang ZG, Wu HH, Li Q, Besenbacher F, Li YR, Zeng XC, Dong MD. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2019;7(3):1901382.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21873027 and 21908046), Hubei Natural Science Foundation (No. 2019CFB293) and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules (No. KLSAOFM1802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Li Long or Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, DH., Long, HL. et al. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 40, 2657–2689 (2021). https://doi.org/10.1007/s12598-020-01694-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01694-w

Keywords

Navigation