Skip to main content
Log in

Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This article presents a mathematical model that predicts the chemical conditions at the electrode surface during the electrochemical reduction of CO2. Such electrochemical reduction of CO2 to valuable products is an area of interest for the purpose of reducing green house gas emissions. In the reactions involved, CO2 acts as both a reactant and a buffer, consequently the estimation of local concentrations at the electrode surface is not trivial and a numerical approach is required. The necessary partial differential equations (PDEs) have been set-up and solved using MATLAB. The results show the local concentrations at the electrode surface to be significantly different from the bulk concentrations under typical reported experimental conditions. The importance of buffer strength and a careful quantification of the degree of mixing produced in the experimental apparatus is demonstrated. The model has also been used to re-examine previously published data, showing that the Tafel slopes in CO2 reduction are consistent with those reported for the simpler CO reduction system. Further, the effect of pulsed electroreduction was also modeled, showing that pulsing causes corresponding swings in local pH and CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Symbol :

Description (Units)

cef\(_{{\rm CH}_{4}}\) :

current efficiency for methane formation (dimensionless)

cef\(_{{\rm C}_{2}{\rm H}_{4}}\) :

Current efficiency for ethylene formation (dimensionless)

cefCO :

current efficiency for carbon monoxide formation (dimensionless)

cef\(_{{\rm H}_{2}}\) :

current efficiency for hydrogen formation (dimensionless)

cef\(_{{\rm HCOO}^{-}}\) :

current efficiency for formate formation (dimensionless)

CO2 consumption :

rate of CO2 consumption at cathode surface (kmol  m−2 s−1)

D \(^{0}_{{\rm CO}_{2}}\) :

diffusion coefficient for carbon dioxide in water at 25 °C at infinite dilution (m2 s−1)

D \(^{0}_{{\rm CO}_{3}^{-}}\) :

diffusion coefficient for carbonate ions in water at 25 °C at infinite dilution (m2 s−1)

D \(^{0}_{{\rm HCO}_{3}^{-}}\) :

diffusion coefficient for bicarbonate ions in water at 25 °C at infinite dilution (m2 s−1)

D \(^{0}_{{\rm OH}^{-}}\) :

diffusion coefficient for hydroxyl ions at 25 °C at infinite dilution (m2 s−1)

D \(_{{\rm CO}_{2}}\) :

diffusion coefficient for carbon dioxide in water at 25 °C and given electrolyte concentration (m2 s−1)

D \(_{{\rm CO}_{3}^{-}}\) :

diffusion coefficient for carbonate ions in water at 25 °C and given electrolyte concentration (m2 s−1)

D HCO 3 :

diffusion coefficient for bicarbonate ions in water at 25 °C and given electrolyte concentration (m2 s−1)

D \(_{{\rm OH}^{-}}\) :

diffusion coefficient for hydroxyl ions at 25 °C and given electrolyte concentration (m2 s−1)

F :

Faraday’s constant (96486) (C mol−1)

j :

current density at the Cu electrode (A m−2)

k 1f :

rate constant for forward reaction (3b) (M−1 s−1)

k 1r :

rate constant for reverse reaction (3b) (M−1 s−1)

k 2f :

rate constant for forward reaction (4) (s−1)

k 2r :

rate constant for reverse reaction (4) (s−1)

K H :

equilibrium constant for reaction (1) (dimensionless)

K 1a :

equilibrium constant for reaction (3a) (M)

K 1b :

equilibrium constant for reaction (3b) (M−1)

K 2 :

equilibrium constant for reaction (4) (M−1)

K 3 :

equilibrium constant for reaction (5) (dimensionless)

OH\(^{-}_{\rm formation}\) :

rate of OH formation at cathode surface (kmol  m−2 s−1)

zeff\(_{{\rm CH}_{4}}\) :

electrons exchanged in reaction (13) (dimensionless)

zeff\(_{{\rm C}_{2}{\rm H}_{4}}\) :

electrons exchanged in reaction (14) (dimensionless)

zeffCO :

electrons exchanged in reaction (12) (dimensionless)

zeffH 2 :

electrons exchanged in reaction (15) (dimensionless)

zeff\(_{{\rm HCOO}^{-}}\) :

electrons exchanged in reaction (11) (dimensionless)

Greek :

Description (Units)

δ:

boundary layer thickness (m)

μ:

viscosity of electrolyte solution (mPa  s or cP)

References

  1. Bandi A., Specht M., Weimer T., Schaber K. (1995) Energy Conversion Management 36:899

    Article  CAS  Google Scholar 

  2. Tryk D.A., Fujishima A. (2001) The Electrochem. Soc. Interface 10:32

    CAS  Google Scholar 

  3. Sullivan B.P., Krist K., Guard H.E. (eds). (1993). Electrochemical and Electrocatalytic Reactions of Carbon Dioxide. Elsevier, Amsterdam

    Google Scholar 

  4. Y. Hori, in W. Vielstich and H.A. Gasteiger and A. Lamm (Eds), Handbook of Fuel Cells’, (John Wiley and Sons, Ltd., West Sussex, England 2 2003) p. 720

  5. Teeter T.E., Van Rysselberghe P. (1954) J. Chem. Phys 22:759

    CAS  Google Scholar 

  6. Ito K., Murata T., Ikeda S. (1975) Bull. Nagoya Inst. Techn 27:209

    CAS  Google Scholar 

  7. Stevens G.B., Reda T., Raguse B. (2002) J. Electroanal. Chem 526:125

    Article  CAS  Google Scholar 

  8. Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett. (1985) 1695

  9. Hori Y., Akira M., Takahashi R. (1989) J. Chem. Soc. Faraday Trans. 1 85:2309

    Google Scholar 

  10. Y. Hori, K. Kikuchi, A. Murata and S. Suzuki, Chem. Lett. (1986) 897

  11. D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2005, <http://www.hbcpnetbase.com>, (CRC Press, Boca Raton, FL, 2005)

  12. Hori Y., Takahashi R., Yoshinami Y., Murata A. (1997) J. Phys. Chem. B 101:7075

    Article  CAS  Google Scholar 

  13. Hori Y., Akira M., Yoshinami Y. (1991) J. Chem. Soc. Faraday Trans. 1 87:125

    Article  Google Scholar 

  14. Cook R.L., MacDuff R.C., Sammells A.F. (1988) Journal of the Electrochem. Soc 135:1320

    Article  CAS  Google Scholar 

  15. Smith B.D., Irish D.E., Kedzierzawski P., Augustynski J. (1997) J. Electrochem. Soc 144:4288

    Article  CAS  Google Scholar 

  16. Shiratsuchi R., Aikoh Y., Nogami G. (1993) J. Electrochem. Soc 140:3479

    Article  CAS  Google Scholar 

  17. Jermann B., Augustynski J. (1994). Electrochimica Acta 39:1891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Innovative Research Initiative for Greenhouse Gas Mitigation for their financial support for this work, and Prof. Colin Oloman of the University of British Columbia for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gattrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36, 161–172 (2006). https://doi.org/10.1007/s10800-005-9058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9058-y

Keywords

Navigation