Skip to main content
Log in

Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

It is a big challenge to prepare non-rare metal and high-activity electrocatalysts for oxygen reduction reaction (ORR). In this paper, a cobalt/carbon nanotubes/chitosan composite gel was synthesized and then annealed under nitrogen atmosphere to yield the cobalt and nitrogen co-modified carbon nanotubes (Co–N-CNTs) nanocomposite electrocatalysts. In this strategy, the cobalt component considerably enhanced the ORR activity and improved the degree of graphitic structure to increase the electronic conductivity. The chitosan served as sustainable source for nitrogen doping. The Co–N-CNTs exhibit excellent oxygen reduction reaction (ORR) electrocatalytic activity due to the synergetic effect of Co species and N-doping. The Co–N-CNTs also deliver excellent methanol tolerance and superior long-term durability to that of commercial Pt/C, making it a promising ORR electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):10981.

    Article  CAS  Google Scholar 

  2. He JR, Lv WQ, Chen YF, Wen KC, Chen X, Zhang WL, Li YR, Wu Q, He WD. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano. 2017;11(8):8144.

    Article  CAS  Google Scholar 

  3. Zhang LH, Wu SS, Wan Y, Huo YF, Luo YC, Yang MY, Li MC, Lu ZG. Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials. Rare Met. 2017;36(5):442.

    Article  CAS  Google Scholar 

  4. Wu SS, Zhu YG, Huo YF, Luo YC, Zhang LH, Wan Y, Nan B, Cao LJ, Wang ZY, Li MC, Yang MY, Cheng H, Lu ZG. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci Mater China. 2017;60(7):654.

    Article  CAS  Google Scholar 

  5. Zhao XL, Li F, Wang RN, Seo JM, Choi HJ, Jung SM, Mahmood J, Jeon IY, Baek JB. Electrocatalyts: controlled fabrication of hierarchically structured nitrogen-doped carbon nanotubes as a highly active bifunctional oxygen electrocatalyst. Adv Funct Mater. 2017;27(9):1605717.

    Article  Google Scholar 

  6. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  7. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.

    Article  CAS  Google Scholar 

  8. Ren Q, Wang H, Lu XF, Tong YX, Li GR. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci. 2018;5(3):1700515.

    Article  Google Scholar 

  9. Cao LJ, Tao PP, Li MC, Lyu FC, Wang ZY, Wu SS, Wang WX, Huo YF, Huang L, Lu ZG. Synergistic effects of C/α-MoC and Ag for efficient oxygen reduction reaction. J Phys Chem Lett. 2018;9(4):779.

    Article  CAS  Google Scholar 

  10. Yang F, Abadia M, Chen CQ, Wang WK, Li L, Zhang LB, Rogero C, Chuvilin A, Knez M. Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon. Nano Res.2017;10(1):97.

    Article  CAS  Google Scholar 

  11. Kim SJ, Mahmood J, Kim C, Han GF, Kim SW, Jung SM, Zhu G, Yoreo JJD, Kim G, Baek JB. Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J Am Chem Soc. 2018;140(5):1737.

    Article  CAS  Google Scholar 

  12. Yang L, Zeng XF, Wang WC, Cao DP. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv Funct Mater. 2018;28(7):1704537.

    Article  Google Scholar 

  13. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Cheminform. 2015;46(25):2168.

    Article  Google Scholar 

  14. Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew Chem. 2014;53(26):6659.

    Article  CAS  Google Scholar 

  15. Qiao M, Meysami SS, Ferrero GA, Xie F, Meng H, Grobert N, Titirici MM. Low-cost chitosan-derived N-doped carbons boost electrocatalytic activity of multiwall carbon nanotubes. Adv Funct Mater. 2018;28(16):1707284.

    Article  Google Scholar 

  16. Yang J, Sun H, Liang H, Ji H, Song L, Gao C, Xu H. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and graphene. Adv Mater. 2016;47(33):4606.

    Article  Google Scholar 

  17. Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res. 2013;46(8):1878.

    Article  CAS  Google Scholar 

  18. You SJ, Gong XB, Wang W, Qi DP, Wang XH, Chen XD, Ren NQ. Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal–organic frameworks. Adv Energy Mater. 2016;6(1):1501497.

    Article  Google Scholar 

  19. Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1.

    Article  CAS  Google Scholar 

  20. Zhao JJ, Liu YM, Quan X, Chen S, Yu HT, Zhao HM. Nitrogen-doped carbon with a high degree of graphitization derived from biomass as high-performance electrocatalyst for oxygen reduction reaction. Appl Surf Sci. 2017;396:986.

    Article  CAS  Google Scholar 

  21. Lu ZY, Wang J, Huang SF, Hou YL, Li YG, Zhao YP, Mu SC, Zhang JJ, Zhao YF. N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy. 2017;42:334.

    Article  CAS  Google Scholar 

  22. Wu ZY, Chen P, Wu QS, Yang LF, Pan Z, Wang Q. Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy. 2014;8:118.

    Article  CAS  Google Scholar 

  23. Shang CQ, Li MC, Wang ZY, Wu SF, Lu ZG. Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. Chemelectrochem. 2016;3(9):1437.

    Article  CAS  Google Scholar 

  24. Sun Y, Shen ZC, Xin SL, Ma L, Xiao CH, Ding SJ, Li F, Gao GX. Ultrafine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta. 2016;224:561.

    Article  Google Scholar 

  25. Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K. Iron–nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv Funct Mater. 2016;26(5):738.

    Article  CAS  Google Scholar 

  26. Yuan HD, Zhang WK, Wang JG, Zhou GM, Zhuang ZZ, Luo JM, Huang H, Gan YP, Liang C, Xia Y. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium–sulfur batteries. Energy Storage Mater. 2018;10:1.

    Article  Google Scholar 

  27. Fu Y, Yu HY, Jiang C, Zhang TH, Zhan R, Li XW, Li JF, Tian JH, Yang RZ. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv Funct Mater. 2017;28(9):1705094.

    Article  Google Scholar 

  28. Su TM, Shao Q, Qin ZZ, Guo ZH, Wu ZL. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018;8(3):2253.

    Article  CAS  Google Scholar 

  29. Liu YM, Su Y, Quan X, Fan XF, Chen S, Yu HT, Zhao HM, Zhang YB, Zhao JJ. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018;8(2):1186.

    Article  CAS  Google Scholar 

  30. Tang C, Wang B, Wang HF, Zhang Q. Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv Mater. 2017;29(37):1703185.

    Article  Google Scholar 

  31. Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21671096 and 21603094), the Natural Science Foundation of Guangdong Province (No. 2016A030310376), the Guangdong Special Support for the Science and Technology Leading Young Scientist (No. 2016TQ03C919), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06G587) and the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20170412153139454 and JCYJ20170817110251498).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Qun Shang or Hua Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YG., Shang, CQ., Wang, ZY. et al. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Met. 40, 90–95 (2021). https://doi.org/10.1007/s12598-019-01270-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01270-x

Keywords

Navigation