Skip to main content
Log in

Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Rare earth giant magnetostrictive materials (GMMs) Tb1−xDyxFeδ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation.

Graphical abstract

摘要

稀土超磁致伸缩材料 (GMMs) Tb1−xDyxFeδ (Tb–Dy–Fe)因其具有优异的室温磁致伸缩性能, 已成功应用于诸多微机电器件中。然而, Tb–Dy–Fe仍然表现出较大的矫顽力和高磁滞效应, 这不可避免地限制了它的应用范围。有鉴于此, 开展了微磁学模拟以研究析出相 (α-Fe) 尺寸对 Tb–Dy–Fe 矫顽力的影响。模拟结果表明, 随着 α-Fe 在 Tb–Dy–Fe 中的尺寸从 4 nm 增加到50 nm, 因 α-Fe析出相可以充当反磁化核, 矫顽力则相应地从 31.46 mT 降低到12.48 mT。矫顽力的下降趋势可以很好地拟合成平方反比关系, 并且也很好地符合形核场理论。本研究表明, 可以通过改变析出相 α-Fe的大小来有效调控Tb–Dy–Fe 的矫顽力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hunter D, Osborn W, Wang K, Kazantseva N, Hattrick-Simpers J, Suchoski R, Takahashi R, Young ML, Mehta A, Bendersky LA, Lofland SE, Wuttig M, Takeuchi I. Giant magnetostriction in annealed Co1−xFex thin-films. Nat Commun. 2011;2(1):518. https://doi.org/10.1038/ncomms1529.

    Article  CAS  Google Scholar 

  2. Zhou Y, Zhao X, Xu J, Fang Y, Chen G, Song Y, Li S, Chen J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater. 2021;20(12):1670. https://doi.org/10.1038/s41563-021-01093-1.

    Article  CAS  Google Scholar 

  3. Clark AE. Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase compounds. AIP Conf Proc. 1974;18(1):1015. https://doi.org/10.1063/1.2947192.

    Article  Google Scholar 

  4. Clark AE. Chapter 7 magnetostrictive rare earth-Fe2 compounds. In: Handbook of ferromagnetic materials. Elsevier. 1980; 531. https://doi.org/10.1016/S1574-9304(05)80122-1.

  5. Shirazi P, Lee T, Panduranga MK, N’Diaye AT, Barra A, Carman GP. Rare-earth orbital moment contributions to the magnetic anisotropy in magnetostrictive Tb0.3Dy0.7Fe2. Appl Phys Lett. 2021;118(16):162401. https://doi.org/10.1063/5.0049326.

    Article  CAS  Google Scholar 

  6. Bergstrom R, Wuttig M, Cullen J, Zavalij P, Briber R, Dennis C, Garlea VO, Laver M. Morphotropic phase boundaries in ferromagnets: Tb1−xDyxFe2 alloys. Phys Rev Lett. 2013;111(1):017203. https://doi.org/10.1103/PhysRevLett.111.017203.

    Article  CAS  Google Scholar 

  7. Ma T, Liu X, Pan X, Li X, Jiang Y, Yan M, Li H, Fang M, Ren X. Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary. Appl Phys Lett. 2014;105(19):192407. https://doi.org/10.1063/1.4901646.

    Article  CAS  Google Scholar 

  8. Olabi AG, Grunwald A. Design and application of magnetostrictive materials. Mater Des. 2008;29(2):469. https://doi.org/10.1016/j.matdes.2006.12.016.

    Article  CAS  Google Scholar 

  9. Uchida H, Wada M, Koike K, Uchida HH, Koeninger V, Matsumura Y, Kaneko H, Kurino T. Giant magnetostrictive materials: thin film formation and application to magnetic surface acoustic wave devices. J Alloys Compd. 1994;211:576. https://doi.org/10.1016/0925-8388(94)90570-3.

    Article  Google Scholar 

  10. Apicella V, Caponero MA, Davino D, Visone C. A magnetostrictive biased magnetic field sensor with geometrically controlled full-scale range. Sensor Actuat A Phys. 2018;280:475. https://doi.org/10.1016/j.sna.2018.08.014.

    Article  CAS  Google Scholar 

  11. Yang S, Bao H, Zhou C, Wang Y, Ren X, Matsushita Y, Katsuya Y, Tanaka M, Kobayashi K, Song X, Gao J. Large magnetostriction from morphotropic phase boundary in ferromagnets. Phys Rev Lett. 2010;104(19):197201. https://doi.org/10.1103/PhysRevLett.104.197201.

    Article  CAS  Google Scholar 

  12. Li Z, Li YQ, Liu WQ, Wu D, Chen H, Xia WX, Yue M. Origin of low coercivity of high La–Ce-containing Nd–Fe–B sintered magnets. Rare Met. 2021;40(1):180. https://doi.org/10.1007/s12598-020-01556-5.

    Article  CAS  Google Scholar 

  13. Vivas LG, Yanes R, Berkov D, Erokhin S, Bersweiler M, Honecker D, Bender P, Michels A. Toward understanding complex spin textures in nanoparticles by magnetic neutron scattering. Phys Rev Lett. 2020;125(11):117201. https://doi.org/10.1103/PhysRevLett.125.117201.

    Article  CAS  Google Scholar 

  14. Wang C, Zhu M-G. Overview of composition and technique process study on 2:17-type Sm–Co high-temperature permanent magnet. Rare Met. 2021;40(4):790. https://doi.org/10.1007/s12598-020-01514-1.

    Article  CAS  Google Scholar 

  15. Sanz-Hernández D, Hierro-Rodriguez A, Donnelly C, Pablo-Navarro J, Sorrentino A, Pereiro E, Magén C, McVitie S, de Teresa JM, Ferrer S, Fischer P, Fernández-Pacheco A. Artificial double-helix for geometrical control of magnetic chirality. ACS Nano. 2020;14(7):8084. https://doi.org/10.1021/acsnano.0c00720.

    Article  CAS  Google Scholar 

  16. Emdadi A, Hossein Nedjad S, Badri Ghavifekr H, Kavanlouei M, Alijan Farzad Lahiji F, Ramezankhani V. Microstructural dependence of magnetic and magnetostrictive properties in Fe–19 at% Ga. Rare Met. 2020;39(4):413. https://doi.org/10.1007/s12598-016-0800-x.

    Article  CAS  Google Scholar 

  17. de la Venta J, Wang S, Saerbeck T, Ramírez JG, Valmianski I, Schuller IK. Coercivity enhancement in V2O3/Ni bilayers driven by nanoscale phase coexistence. Appl Phys Lett. 2014;104(6): 062410. https://doi.org/10.1063/1.4865587.

    Article  CAS  Google Scholar 

  18. Guan W, Zhang Z, Wang D, Du Y. Coercivity in the Mg-doped CeCo3 permanent magnet: grain size and anisotropy variation effects. Phys Scripta. 2021;96(9):095807. https://doi.org/10.1088/1402-4896/ac04dd.

    Article  Google Scholar 

  19. Gou J, Ma T, Liu X, Zhang C, Sun L, Sun G, Xia W, Ren X. Large and sensitive magnetostriction in ferromagnetic composites with nanodispersive precipitates. NPG Asia Mater. 2021;13(1):6. https://doi.org/10.1038/s41427-020-00276-7.

    Article  CAS  Google Scholar 

  20. Hrkac G, Woodcock TG, Butler KT, Saharan L, Bryan MT, Schrefl T, Gutfleisch O. Impact of different Nd-rich crystal-phases on the coercivity of Nd–Fe–B grain ensembles. Scr Mater. 2014;70:35. https://doi.org/10.1016/j.scriptamat.2013.08.029.

    Article  CAS  Google Scholar 

  21. Kim CS, Zha L, Li MN, Yang WY, Han JZ, Liu SQ, Du HL, Wang CS, Yang JB. Micromagnetic simulation for optimizing nanocomposite Nd2Fe14B/α-Fe permanent magnets by changing grain size and volume fraction. J Magn Magn Mater. 2021;523:167622. https://doi.org/10.1016/j.jmmm.2020.167622.

    Article  CAS  Google Scholar 

  22. Westmoreland SC, Skelland C, Shoji T, Yano M, Kato A, Ito M, Hrkac G, Schrefl T, Evans RFL, Chantrell RW. Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications. J Appl Phys. 2020;127(13):133901. https://doi.org/10.1063/1.5126327.

    Article  CAS  Google Scholar 

  23. Ried K, Schnell M, Schatz F, Hirscher M, Ludescher B, Sigle W, Kronmüller H. Crystallization behaviour and magnetic properties of magnetostrictive TbDyFe films. Phys Status Solidi A. 1998;167(1):195. https://doi.org/10.1002/(SICI)1521-396X(199805)167:1%3c195::AID-PSSA195%3e3.0.CO;2-C.

    Article  CAS  Google Scholar 

  24. Goltsov VA, Vasiljev AG, Vlasenko NN, Fruchart D. Kinetics of hydrogen-induced diffusion phase transformation in binary and pseudobinary intermetallic compounds Tb1−XDyXFe2. Int J Hydrogen Energy. 2002;27(7):765. https://doi.org/10.1016/S0360-3199(01)00106-9.

    Article  CAS  Google Scholar 

  25. Uchida H, Matsumura Y, Uchida H, Kaneko H. Progress in thin films of giant magnetostrictive alloys. J Magn Magn Mater. 2002;239(1):540. https://doi.org/10.1016/S0304-8853(01)00659-X.

    Article  CAS  Google Scholar 

  26. Zhang ZM, Zhao XC, Zhou WP. Field dependence of magnetoresistance in half-metallic manganite. Eur Phys J Appl Phys. 2015;70(3):30601. https://doi.org/10.1051/epjap/2015150047.

    Article  CAS  Google Scholar 

  27. Hu CC, Yang TN, Huang HB, Hu JM, Wang JJ, Shi YG, Shi DN, Chen LQ. Phase-field simulation of domain structures and magnetostrictive response in Tb1−xDyxFe2 alloys near morphotropic phase boundary. Appl Phys Lett. 2016;108(14):141908. https://doi.org/10.1063/1.4945684.

  28. Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceram Int. 2018;44(4):3760. https://doi.org/10.1016/j.ceramint.2017.11.159.

    Article  CAS  Google Scholar 

  29. Zhang ZM, Zhou WP, Li Q, Wang DH, Cao QQ, Du YW. Magnetoresistance in magnetite film: a theoretical and experimental investigation. J Magn Magn Mater. 2017;442:102. https://doi.org/10.1016/j.jmmm.2017.06.078.

    Article  CAS  Google Scholar 

  30. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Adv. 2014;4(10):107133. https://doi.org/10.1063/1.4899186.

    Article  CAS  Google Scholar 

  31. Gilbert TL. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn. 2004;40(6):3443. https://doi.org/10.1109/TMAG.2004.836740.

    Article  CAS  Google Scholar 

  32. Schrefl T, Fidler J. Micromagnetic simulation of magnetizability of nanocomposite Nd–Fe–B magnets. J Appl Phys. 1998;83(11):6262. https://doi.org/10.1063/1.367666.

    Article  CAS  Google Scholar 

  33. Kronmüller H, Hilzinger HR. Incoherent nucleation of reversed domains in Co5Sm permanent magnets. J Magn Magn Mater. 1975;2(1):3. https://doi.org/10.1016/0304-8853(75)90097-9.

    Article  Google Scholar 

  34. Zhao GP, Wang XL. Nucleation, pinning, and coercivity in magnetic nanosystems: an analytical micromagnetic approach. Phys Rev B. 2006;74(1):012409. https://doi.org/10.1103/PhysRevB.74.012409.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3501401), the National Natural Science Foundation of China (No. 52001103), Zhejiang Provincial Natural Science Foundation of China (No. LQ21E010001) and the Ten Thousand Talents Plan of Zhejiang Province of China (No. 2019R52014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Ming Zhang or Dun-Hui Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, FX., Hu, PQ., Zhang, ZM. et al. Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation. Rare Met. 42, 606–613 (2023). https://doi.org/10.1007/s12598-022-02145-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02145-4

Keywords

Navigation