Skip to main content
Log in

Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The precise elimination of selectable marker genes is highly desirable, when their function is no longer needed, because their presence raised worldwide public concerns against the release of genetically modified plants. This is the first report of simultaneous application of the minimal gene cassette and cold-inducible Cre/lox recombination system in wheat. The bar selection and cre-recombinase genes were eliminated from T0 and T1 transgenic lines with 44 and 51 % efficiency. This approach provides a new, reasonably effective technique to produce selection gene-free transgenic wheat lines either immediately after tissue culture, or from the subsequent transgenic generation. The advantage of this method is that it does not require any additional cold treatment during the plant regeneration/growing because the transgene elimination is ensured by the vernalisation. Application of this method prevents gene flow by pollen and seed, because the selection and recombinase genes are eliminated before pollen development, therefore reducing the risk of GM plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbudak AM, Srivastava V (2011) Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre–lox mediated site-specific gene integration in rice. Mol Biotechnol 49:82–89. doi:10.1007/s12033-011-9381-y

    Article  CAS  PubMed  Google Scholar 

  • Albert H, Dale EC, Lee E, Ok DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Wang Q, Chengcai C (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res 17:1035–1043. doi:10.1007/s11248-008-9182-7

    Article  CAS  PubMed  Google Scholar 

  • Belintani NG, Guerzoni JTS, Moreira RMP, Vieira LGE (2012) Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plant 56:71–77

    Article  CAS  Google Scholar 

  • Blechl A, Lin J, Shao M, Thilmony R, Thomson J (2012) The Bxb1 recombinase mediates site-specific deletion in transgenic wheat. Plant Mol Biol Report 30:1357–1366. doi:10.1007/s11105-012-0454-2

    Article  CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S (2008) Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep 27:1623–1633. doi:10.1007/s00299-008-0585-y

    Article  CAS  PubMed  Google Scholar 

  • Chong-Perez B, Kosky RG, Reyes M, Rojas L, Ocãna B, Tejeda M, Perez B, Angenon G (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159:265–273. doi:10.1016/j.jbiotec.2011.07.031

    Article  CAS  PubMed  Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. Plant Mol Biol 83:143–152. doi:10.1007/s11103-013-0058-8

    Article  PubMed  Google Scholar 

  • Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJM, Nijkamp HJ, van Haaren MJJ (2003) Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 51:263–279

    Article  CAS  PubMed  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA-and marker-free rice plants expressing a Bt endotoxin gene. Mol Breeding 10:165–180

    Article  CAS  Google Scholar 

  • Cuellar W, Gaudin A, Solórzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82. doi:10.1007/s11103-006-9004-3

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  CAS  PubMed  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467. doi:10.1007/s11627-008-9140-3

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: cre-ative tools for plant biotechnology. Trends Biotechnol 21:550–555. doi:10.1016/j.tibtech.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  • Hoa TTC, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genom. Theor Appl Genet 104:518–525. doi:10.1007/s001220100748

    Article  CAS  PubMed  Google Scholar 

  • Hoess RH, Abremski K (1985) Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol 181:351–362

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Danyluk J, Laliberté J-F, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99:1381–1387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H (2008) FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J 6:176–188. doi:10.1111/j.1467-652.2007.00310.x

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ding X, Hu S, Sun Y, Xia L (2013) Tissue-specifically regulated site-specific excision of selectable marker gene in bivalent insecticidal, genetically modified rice. Biotechnol Lett 35:2177–2183. doi:10.1007/s10529-013-1310-7

    Article  CAS  PubMed  Google Scholar 

  • Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M (2010) Transgene excision from wheat chromosomes by phage phiC31 integrase. Plant Mol Biol 72(6):673–687. doi:10.1007/s11103-010-9606-7

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137–143. doi:10.1007/s11103-007-9140-4

    Article  CAS  PubMed  Google Scholar 

  • Kopertekh L, Jüttner G, Schiemann J (2004) PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol 55:491–500

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2011) Expression of dehydrins in wheat and barley under different temperatures. Plant Sci 180:46–52. doi:10.1016/j.plantsci.2010.07.003

    Article  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Turečková V, Rolčik J, Pešek B, Trávničková A, Gaudinová A, Galiba G, Janda T, Vlasáková E, Prášilová P, Vanková R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576. doi:10.1016/j.jplph.2011.12.013

  • Kosová K, Vítámvás P, Prášilová P, Prášil IT (2013) Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol Plant 57:105–112. doi:10.1007/s10535-012-0237-5

    Article  Google Scholar 

  • Kumar S, Arul L, Talwar D (2010) Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance. J Appl Genet 51:243–257

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xingguo Y, Baoyan A, Lipu D, Huijun X (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Report 6:183–193. doi:10.1007/s11816-011-0213-0

    Article  Google Scholar 

  • Limin AE, Houde M, Chauvin LP, Fowler DB, Sarhan F (1995) Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations. Genome 38:1023–1031. doi:10.1139/g95-135

    Article  CAS  PubMed  Google Scholar 

  • Liu HK, Yang C, Wei ZH (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168:997–1003. doi:10.1016/j.plantsci.2004.11.021

    Article  CAS  Google Scholar 

  • Loc TN, Tinjuangjun P, Gatehouse MRA, Christou P, Gatehouse AJ (2002) Linear transgene constructs lacking vector backbones sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breeding 9:231–244

    Article  CAS  Google Scholar 

  • Ma B, Duan X, Ma C, Niu J, Zhang H, Pan L (2008) Salicylic-acid-induced self-excision of the marker gene nptII from transgenic tomato using the Cre–loxP System. Plant Mol Biol Report 26:199–212. doi:10.1007/s11105-008-0039-2

    Article  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breeding 7:195–202

    Article  CAS  Google Scholar 

  • Mlynárová L, Conner AJ, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452. doi:10.1111/j.1467-7652.2006.00194.x

    Article  PubMed  Google Scholar 

  • Moravčíková J, Vaculková E, Bauer M, Libantová J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor Appl Genet 117:1325–1334. doi:10.1007/s00122-008-0866-4

  • Nandy S, Srivastava V (2012) Marker-free site-specific gene integration in rice based on the use of two recombination systems. Plant Biotechnol J 10:904–912. doi:10.1111/j.1467-7652.2012.00715.x

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Kawahigashi H, Toki S, Handa H (2008) Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Rep 27:1325–1331. doi:10.1007/s00299-008-0553-6

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430. doi:10.1139/g01-154

    Article  CAS  PubMed  Google Scholar 

  • Quellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    Article  Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    Article  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organization in potato after particle bombardment mediated (co-)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  CAS  PubMed  Google Scholar 

  • Russell SH, Hoopes JL, Odell JL (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  • Sarhan F, Ouellet F, Vazquez-Tello A (1997) The wheat WCS120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant 101:439–445

    Article  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930. doi:10.1007/s00122-002-1131-x

    CAS  PubMed  Google Scholar 

  • Sparks CA, Jones HD (2004) Transformation of wheat by biolistics. In: Curtis IS (ed) Transgenic crops of the world—essential protocols. Kluwer Publishers, Dordrecht, pp 19–34

    Chapter  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94. doi:10.1007/s00299-004-0909-5

    Article  CAS  PubMed  Google Scholar 

  • Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187:197–212

    Article  CAS  PubMed  Google Scholar 

  • Tamás C, Szucs P, Rakszegi M, Tamás L, Bedő Z (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tissue Organ Cult 79:39–44

    Article  Google Scholar 

  • Tamás C, Kisgyörgy BN, Rakszegi M, Wilkinson MD, Yang MS, Láng L, Tamás L, Bedo Z (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094. doi:10.1007/s00299-009-0716-0

    Article  PubMed  Google Scholar 

  • Tassy C, Partier A, Beckert M, Feuillet C, Barret P (2014) Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. Plant Cell Tiss Org Cult 119:171–181. doi:10.1007/s11240-014-0524-2

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IBL (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

  • Uzè M, Potrykus I, Sautter C (1999) Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.): transformation frequency and intergration pattern. Theor Appl Genet 99:487–495

    Article  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814. doi:10.1007/s00299-006-0132-7

    Article  CAS  PubMed  Google Scholar 

  • Vitámvás P, Prášil IT (2008) WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol Biochem 46:970–976. doi:10.1016/j.plaphy.2008.06.006

    Article  PubMed  Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436. doi:10.1007/s002990100318

    Article  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668. doi:10.1007/s00299-002-0564-7

    CAS  PubMed  Google Scholar 

  • Yao Q, Cong L, He G, Chang J, Li K, Yang G (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67. doi:10.1007/s11033-006-9016-8

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Wu R (2008) Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Sci 174:519–523. doi:10.1016/j.plantsci.2008.01.017

    Article  CAS  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161. doi:10.1038/84428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was funded by the OTKA project no. 68659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Mészáros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mészáros, K., Éva, C., Kiss, T. et al. Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System. Plant Mol Biol Rep 33, 1221–1231 (2015). https://doi.org/10.1007/s11105-014-0830-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0830-1

Keywords

Navigation