Skip to main content
Log in

Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Sugarcane is cultivated in tropical and subtropical regions where cold stress is not very common, but lower yields and reduced industrial quality of the plants are observed when it occurs. In our efforts to enhance cold tolerance in sugarcane, the gene encoding the enzyme isopentenyltransferase (ipt) under control of the cold inducible gene promoter AtCOR15a was transferred via biolistic transformation into sugarcane (Saccharum spp.) cv. RB855536. Semiquantitative RT-PCR using GAPDH encoding glyceraldehyde-3-phosphate dehydrogenase as the normalizer gene showed the increased expression of the ipt gene under cold stress. The detached leaves of genetically modified plants subjected to low temperatures showed visible reduction of leaf senescence in comparison to non-transgenic control plants. Induced overexpression of ipt gene also enhanced cold tolerance of non-acclimated whole plants. After being subjected to freezing temperature, leaf total chlorophyll contents of transgenic plants were up to 31 % higher than in wild type plants. Also, lower malondialdehyde content and electrolyte leakage indicated less damage induced by cold in transgenic plants. Thus, the expression of ipt driven by the stress inducible COR15a promoter did not affect plant growth while providing a greater tolerance to cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBF:

C-binding factor

CK:

cytokinin

CRT/DRE:

C-repeat/dehydration responsive element

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MDA:

malondialdehyde

RT-PCR:

reverse transcriptase-polymerase chain reaction

References

  • Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signaling. — Biol. Plant. 54: 201–212, 2010.

    Article  CAS  Google Scholar 

  • Akiyoshi, D., Klee, H., Amasino, R., Nester, E., Gordon, M.: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. — Proc. nat. Acad. Sci. USA. 81: 5994–5998, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S.S., Wilhelm, K.S., Thomashow, M.F.: The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought and ABA-regulated gene expression. — Plant mol. Biol. 24: 701–713, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Benedict, C., Skinner, J.S, Meng, R., Chang, Y., Bhalerao, R., Huner, N.P.A., Finn, C.E., Chen, T.H.H., Hurry, V.: The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. — Plant Cell Environ. 29: 1259–1272, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bower, R., Elliott, A.R., Potier, B.A.M., Birch, R.G.: Highefficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. — Mol. Breed. 2: 239–249, 1996.

    Google Scholar 

  • Chen, L.F.O., Hwang, J.Y., Charng, Y.Y., Sun, C.W., Yang, S.F.: Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest retardation. — Mol. Breed. 7: 243–257, 2001.

    Article  CAS  Google Scholar 

  • Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., Luan, S.: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. — Plant Physiol. 129: 661–677, 2002.

    Article  PubMed  CAS  Google Scholar 

  • D’Hont, A., Souza, G.M., Menossi, M., Vincentz, M., Van-Slyuis, M.-A., Glaszmann, J.C., Ulian, E.: Sugarcane: a major source of sweetness, alcohol and bioenergy. — In: Moore, P.H., Ming, R. (ed.): Genomics of Tropical Crop Plants. Pp. 483–513. Springer, New York 2008.

    Chapter  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. — Focus 12: 13–15, 1987.

    Google Scholar 

  • Gan, S., Amasino, M.: Inhibition of leaf senescence by autoregulated production of cytokinin. — Science 270: 1986–1988, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya, M., Li, Y., Vankova, R., Malbeck, J., Mcavoy, R.: Effects of cor15a-ipt gene expression on leaf senescence in transgenic Petunia × hybrida and Dendranthema × grandiflorum. — J. exp. Bot. 56: 1165–1175, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kieber, J.J.: Cytokinins. — In: Somerville, C., Meyerowitz, E. (ed.): The Arabidopsis Book. Pp. 2–25. American Society of Plant Biologists, Rockville 2002.

    Google Scholar 

  • Květoň, J.: Extent of ipt gene expression and resulting amount of cytokinins affect activities of carboxylation enzymes in transgenic plants. — Biol. Plant. 50: 21–30, 2006.

    Article  Google Scholar 

  • Last, D.I., Brettell, R.I.S., Chamberlain, D.A., Chaudhury, A.M., Larkin, P.J., Marsh, E.L., Peacock, W.J., Dennis, E.S.: pEmu: an improved promoter for gene expression in cereal cells. — Theor. appl. Genet. 82: 582–588, 1991.

    Google Scholar 

  • Lee, B., Henderson, D.A., Zhua, J.-K.: The Arabidopsis coldresponsive transcriptome and its regulation by ICE1. — Plant Cell 17: 3155–3175, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.S.G.: Micropropagation of sugarcane (Saccharum spp.). — Plant Cell Tissue Organ Cult. 10: 47–55, 1987.

    Article  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Meth. Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lim, P.O.K., Kim, H.J., Nam, H.G.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 115–136, 2007.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, M.S., Garrat, L.C., Schepers, F., Jordi, W.J.R., Stoopen, G.M., Davelaar, E., Van Rhijn, H.A., Power, J.B., Davey, M.R.: Effects of PSAG12-ipt gene expression on development and senescence in transgenic lettuce. — Plant Physiol. 127: 505–516, 2001.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, M.J., Mett, V., Reynolds, P.H.S., Jameson, P.: Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. — Plant Physiol. 116: 969–977, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, M.D., Naur, P., Halkier, B.A.: Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. — Plant J. 37: 770–777, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R., Moore, P.H., Wu, K.-K., D’Hont, A., Glaszmann, J., Thew, T.L.: Sugarcane improvement trough breeding and biotechnology. — Plant Breed. Rev. 27: 15–118, 2006.

    CAS  Google Scholar 

  • Molinari, H.B., Marur, C.J., Daros, E., Campos, M.K.F., Carvalho, J.F.R.P., Bespalhok Filho, J.C., Pereira, L.F.P., Vieira, L.G.E.: Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. — Physiol. Plant. 130: 218–229, 2007.

    Article  CAS  Google Scholar 

  • Moore, P.H.: Breeding for stress resistance. — In: Heinz, D.J. (ed.): Sugarcane Improvement through Breeding. Pp. 503–542. Elsevier, Amsterdam 1987.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–479, 1962.

    Article  CAS  Google Scholar 

  • Pasquali, G., Orbović, V., Grosser, J.W.: Transgenic grapefruit plants expressing the PAPETALA3-IPTgp gene exhibit altered expression of PR genes. — Plant Cell Tissue Organ Cult. 97: 215–223, 2009.

    Article  CAS  Google Scholar 

  • Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, A., Mitler, R., Gepstein, S., Blumwald, E.: Delayed leaf senescence induces extreme drought tolerance in a flowering plant. — Proc. natl. Acad. Sci. USA 104: 19631–19636, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inze, D., Mittler, R.: Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. — Plant J. 32: 329–342, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara, H.: Cytokinins: activity, biosynthesis, and translocation. — Annu. Rev. Plant Biol. 57: 431–449, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Su, J., Wu, R.: Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. — Plant Sci. 166: 941–948, 2004.

    Article  CAS  Google Scholar 

  • Swartzberg, D., Kirshner, B., Rav-David, D., Elad, Y., Granot, D.: Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the ipt gene. — Eur. J. Plant Pathol. 120: 289–297, 2008.

    Article  CAS  Google Scholar 

  • Synková, H., Semorádová, Š., Schnablová, R., Witters, E., Hušák, M., Valcke, R.: Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. — Biol. Plant. 50: 31–41, 2006.

    Article  Google Scholar 

  • Tai, P.Y.P., Lentini, R.S.: Freeze damage of Florida sugarcane. — In: Anderson, D.L. (ed.): Sugarcane Handbook. Florida Cooperative Extension, Gainesville 1998.

    Google Scholar 

  • Thomashow, M.F.: Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. — In: Meyerowitz, E., Somerville, C. (ed.): Arabidopsis. Pp. 807–834. Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 1994.

    Google Scholar 

  • To, J.P.C., Kieber, J.J.: Cytokinin signaling: two-components and more. — Trends Plant Sci. 13: 85–92, 2007.

    Article  Google Scholar 

  • Uemura, M., Joseph, R.A., Steponkus, P.L.: Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-induced lesions). — Plant Physiol. 109: 15–30, 1995.

    Google Scholar 

  • Wang, J., Letham, D.S., Cornish, E., Wei, K., Hocart, C.H., Michael, M., Stevenson, K.R.: Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or gus gene controlled by a chalcone synthase promoter: II ipt and gus gene expression, cytokinin levels and metabolism. — Aust. Plant Physiol. 24: 73–683. 1997.

  • Werner, T., Schmulling, T.: Cytokinin action in plant development. — Curr. Opin. Plant Biol. 12: 527–538, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., Zhao, H., Liu, W., Li, L., He, Y.: Role of cytokinin and salicylic acid in plant growth at low temperatures. — Plant Growth Regul. 57: 211–221, 2009.

    Article  CAS  Google Scholar 

  • Xin, Z., Browse, J.: Cold comfort farm: the acclimation of plants to freezing temperatures. — Plant Cell Environ. 23: 893–902, 2000.

    Article  Google Scholar 

  • Zhang, X.-Y., Liang, C., Wang, G.-P., Luo, Y., Wang, W.: The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. — Biol. Plant. 54: 83–88, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jamil C. Marur for technical help with the cold stress experiments. Special thanks to Sandra Cação, Gislaine Vasquez and Tiago Santos for their technical assistance. N.G.B. is thankful to CAPES for the scholarship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. E. Vieira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belintani, N.G., Guerzoni, J.T.S., Moreira, R.M.P. et al. Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plant 56, 71–77 (2012). https://doi.org/10.1007/s10535-012-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0018-1

Additional key words

Navigation