Skip to main content

Advertisement

Log in

Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Araki, H.; Jearnpipatkul, A.; Tatsumi, H.; Sakurai, T.; Ushio, K.; Muta, T.; et al. Molecular and functional organization of yeast plasmid pSR1. J. Mol. Biol 182: 191–203; 1985, DOI 10.1016/0022-2836(85)90338-9.

    PubMed  Google Scholar 

  • Arumugam, N.; Gupta, V.; Jagannath, A.; Mukhopadhyay, A.; Pradhan, A. K.; Burma, P. K.; et al. A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-loxP system. Transgenic Res 16: 703–712; 2007, DOI 10.1007/s11248-006-9058-7.

    PubMed  Google Scholar 

  • Ballester A.; Cervera M.; Peña L. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26: 39–45; 2007, DOI 10.1007/s00299-006-0197-3.

    PubMed  Google Scholar 

  • Bar M.; Leshem B.; Gilboa N.; Gidoni D. Visual characterization of recombination at FRT-gusA loci in transgenic tobacco mediated by constitutive expression of the native FLP recombinase. Theor. Appl. Genet 93: 407–413; 1996, DOI 10.1007/BF00223183.

    Google Scholar 

  • Bayer M.; Hess D. Restoring full pollen fertility in transgenic male-sterile tobacco (Nicotiana tabacum L.) by Cre-mediated site-specific recombination. Mol. Breed 15: 193–203; 2005, DOI 10.1007/s11032-004-5042-1.

    Google Scholar 

  • Bayley C. C.; Morgan M.; Dale E. C.; Ow D. W. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol. Biol 18: 353–361; 1992, DOI 10.1007/BF00034962.

    PubMed  Google Scholar 

  • Belteki G.; Gertsenstein M.; Ow D. W.; Nagy A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol 21: 321–324; 2003, DOI 10.1038/nbt787.

    PubMed  Google Scholar 

  • Bolusani S.; Ma C. H.; Paek A.; Konieczka J. H.; Jayaram M.; Voziyanov Y. Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34: 5259–5269; 2006, DOI 10.1093/nar/gkl548.

    PubMed  Google Scholar 

  • Broach J. R. The yeast plasmid 2 mu circle. Cell 28: 203–204; 1982, DOI 10.1016/0092-8674(82)90337-3.

    PubMed  Google Scholar 

  • Buchholz F.; Stewart A. F. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat. Biotechnol 19: 1047–1052; 2001, DOI 10.1038/nbt1101-1047.

    PubMed  Google Scholar 

  • Chen Y.; Rice P. A. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu. Rev. Biophys. Biomol. Struct 32: 135–159; 2003, DOI 10.1146/annurev.biophys.32.110601.141732.

    PubMed  Google Scholar 

  • Combes P.; Till R.; Bee S.; Smith M. C. The streptomyces genome contains multiple pseudo-attB sites for the phiC31-encoded site-specific recombination system. J Bacteriol 184: 5746–5752; 2002, DOI 10.1128/JB.184.20.5746-5752.2002.

    PubMed  Google Scholar 

  • Coppoolse, E. R.; de Vroomen, M. J.; Roelofs, D.; Smit, J.; van Gennip, F.; Hersmus, B. J. M.; et al. Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol. Biol 51: 263–279; 2003, DOI 10.1023/A:1021174726070.

    PubMed  Google Scholar 

  • Cuellar, W.; Gaudin, A.; Solórzano, D.; Casas, A.; Nopo, L.; Chudalayandi, P.; et al. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol. Biol 62: 71–82; 2006, DOI 10.1007/s11103-006-9004-3.

    PubMed  Google Scholar 

  • Dale E. C.; Ow D. W. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85; 1990, DOI 10.1016/0378-1119(90)90165-N.

    PubMed  Google Scholar 

  • Dale E. C.; Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. U S A 88: 10558–10562; 1991, DOI 10.1073/pnas.88.23.10558.

    PubMed  Google Scholar 

  • Darbani B.; Eimanifar A.; Stewart C. N. Jr; Camargo W. N. Methods to produce marker-free transgenic plants. Biotechnol. J 2: 83–90; 2007, DOI 10.1002/biot.200600182.

    PubMed  Google Scholar 

  • De Buck, S.; Peck, I.; De Wilde, C.; Marjanac, G.; Nolf, J.; De Paepe, A.; et al. Generation of single-copy T-DNA Arabidopsis transformants by the CRE/loxP recombination-mediated resolution system. Plant Physiol 145: 1171–1182; 2007, DOI 10.1104/pp.107.104067.

    PubMed  Google Scholar 

  • Djukanovic, V.; Orczyk, W.; Gao, H.; Sun, X.; Garrett, N.; Zhen, S.; et al. Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant Biotechnol. J 4: 345–357; 2006, DOI 10.1111/j.1467-7652.2006.00186.x.

    PubMed  Google Scholar 

  • Ebinuma H.; Komamine A. MAT (multi-auto-transformation) vector system. the oncogenes of agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell. Dev. Biol. Plant 37: 103–113; 2001, DOI 10.1007/s11627-001-0021-2.

    Google Scholar 

  • Ebinuma H.; Sugita K.; Matsunaga E.; Endo S.; Yamada K.; Komamine A. Systems for the removal of a selectable marker and their combination with a positive marker. Plant Cell. Rep. 20: 383–392; 2001, DOI 10.1007/s002990100344.

    Google Scholar 

  • Ebinuma H.; Sugita K.; Matsunaga E.; Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc. Natl. Acad. Sci. U S A 94: 2117–2121; 1997, DOI 10.1073/pnas.94.6.2117.

    PubMed  Google Scholar 

  • Endo S.; Sugita K.; Sakai M.; Tanaka H.; Ebinuma H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30: 115–122; 2002, DOI 10.1046/j.1365-313X.2002.01272.x.

    PubMed  Google Scholar 

  • Gidoni D.; Bar M.; Gilboa N. FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Res 10: 317–328; 2001a, DOI 10.1023/A:1016603627254.

    PubMed  Google Scholar 

  • Gidoni D.; Bar M.; Leshem B.; Gilboa N.; Mett A.; Feiler J. Embryonal recombination and germline inheritance of recombined FRT loci mediated by constitutively expressed FLP in tobacco. Euphytica 121: 145–156; 2001b, DOI 10.1023/A:1012081125631.

    Google Scholar 

  • Gidoni, D.; Fuss, E.; Burbidge, A.; Speckmann, G.-J.; James, S.; Nijkamp, D.; et al. Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol. Biol 51: 83–98; 2003, DOI 10.1023/A:1020718520618.

    PubMed  Google Scholar 

  • Gilbertson L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol 21: 550–555; 2003, DOI 10.1016/j.tibtech.2003.09.011.

    PubMed  Google Scholar 

  • Gleave A. P.; Mitra D. S.; Mudge S. R.; Morris B. A. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol 40: 223–235; 1999, DOI 10.1023/A:1006184221051.

    PubMed  Google Scholar 

  • Goldstein, D. A.; Tinland, B.; Gilbertson, L. A.; Staub, J. M.; Bannon, G. A.; Goodman, R. E.; et al. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99: 7–23; 2005, DOI 10.1111/j.1365-2672.2005.02595.x.

    PubMed  Google Scholar 

  • Golic K. G.; Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59: 499–509; 1989, DOI 10.1016/0092-8674(89)90033-0.

    PubMed  Google Scholar 

  • Gopaul D. N.; Van Duyne G. D. Structure and mechanism in site-specific recombination. Curr Opin Struct Biol 9: 14–20; 1999, DOI 10.1016/S0959-440X(99)80003-7.

    PubMed  Google Scholar 

  • Gottfried, P.; Lotan, O.; Kolot, M.; Maslenin, L.; Bendov, R.; Gorovits, R.; et al. Site-specific recombination in Arabidopsis plants promoted by the Integrase protein of coliphage HK022. Plant Mol. Biol 57: 435–444; 2005, DOI 10.1007/s11103-004-0076-7.

    PubMed  Google Scholar 

  • Grindley N. D.; Whiteson K. L.; Rice P. A. Mechanisms of site-specific recombination. Annu. Rev. Biochem 75: 567–605; 2006, DOI 10.1146/annurev.biochem.73.011303.073908.

    PubMed  Google Scholar 

  • Grønlund J. T.; Stemmer C.; Lichota J.; Merkle T.; Grasser K. D. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes. Plant Mol. Biol 63: 545–556; 2007, DOI 10.1007/s11103-006-9108-9.

    PubMed  Google Scholar 

  • Groth A. C.; Calos M. P. Phage integrases: biology and applications. J. Mol. Biol 335: 667–678; 2004, DOI 10.1016/j.jmb.2003.09.082.

    PubMed  Google Scholar 

  • Groth A. C.; Fish M.; Nusse R.; Calos M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166: 1775–1782; 2004, DOI 10.1534/genetics.166.4.1775.

    PubMed  Google Scholar 

  • Groth A. C.; Olivares E. C.; Thyagarajan B.; Calos M. P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. U S A 97: 5995–6000; 2000, DOI 10.1073/pnas.090527097.

    PubMed  Google Scholar 

  • Hare P. D.; Chua N. H. Excision of selectable marker genes from transgenic plants. Nat. Biotechnol 20: 575–580; 2002, DOI 10.1038/nbt0602-575.

    PubMed  Google Scholar 

  • Hoa T. T. C.; Bong B. B.; Huq E.; Hodges T. K. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor. Appl. Genet 104: 518–525; 2002, DOI 10.1007/s001220100748.

    PubMed  Google Scholar 

  • Hoess R. H.; Abremski K. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc. Natl. Acad. Sci. U S A 81: 1026–1029; 1984, DOI 10.1073/pnas.81.4.1026.

    PubMed  Google Scholar 

  • Hoess R. H.; Abremski K. Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J. Mol. Biol 181: 351–362; 1985, DOI 10.1016/0022-2836(85)90224-4.

    PubMed  Google Scholar 

  • Hoess R. H.; Wierzbicki A.; Abremski K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 14: 2287–2300; 1986, DOI 10.1093/nar/14.5.2287.

    PubMed  Google Scholar 

  • Hoff T.; Schnorr K. M.; Mundy J. A. Recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol. Biol 45: 41–49; 2001, DOI 10.1023/A:1006402308365.

    PubMed  Google Scholar 

  • Hohn B.; Levy A. A.; Puchta H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol 12: 139–143; 2001, DOI 10.1016/S0958-1669(00)00188-9.

    PubMed  Google Scholar 

  • Hollis R. P.; Stoll S. M.; Sclimenti C. R.; Lin J.; Chen-Tsai Y.; Calos M. P. Phage integrases for the construction and manipulation of transgenic mammals. Reproduct Biol Endocrinol 1: 79–90; 2003, DOI 10.1186/1477-7827-1-79.

    Google Scholar 

  • Hu, Q.; Kononowicz-Hodges, H.; Nelson-Vasilchik, K.; Viola, D.; Zeng, P.; Liu, H.; et al. FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol. J 6: 176–188; 2008, DOI 10.1111/j.1467-7652.2007.00310.x.

    PubMed  Google Scholar 

  • Hu Q.; Nelson K.; Luo H. FLP-mediated site-specific recombination for genome modification in turfgrass. Biotechnol. Lett 28: 1793–1804; 2006, DOI 10.1007/s10529-006-9162-z.

    PubMed  Google Scholar 

  • Huang L. C.; Wood E. A.; Cox M. M. A bacterial model system for chromosomal targeting. Nucleic Acids Res 19: 443–448; 1991, DOI 10.1093/nar/19.3.443.

    PubMed  Google Scholar 

  • Jia H.; Pang Y.; Chen X.; Fang R. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res 15: 375–384; 2006, DOI 10.1007/s11248-006-0011-6.

    PubMed  Google Scholar 

  • Keenan R. J.; Stemmer W. P. Non-transgenic crops from transgenic plants. Nat. Biotechnol 20: 215–216l; 2002, DOI 10.1038/nbt0302-215.

    PubMed  Google Scholar 

  • Keravala, A.; Groth, A. C.; Jarrahian, S.; Thyagarajan, B.; Hoyt, J. J.; Kirby, P. J.; et al. Diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol. Genet. Genomics 276: 135–146; 2006, DOI 10.1007/s00438-006-0129-5.

    PubMed  Google Scholar 

  • Kerbach S.; Lörz H.; Becker D. Site-specific recombination in Zea mays. Theor. Appl. Genet 111: 1608–1616; 2005, DOI 10.1007/s00122-005-0092-2.

    PubMed  Google Scholar 

  • Kilby N. J.; Davies G. J.; Snaith M. R.; Murray J. A. H. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8: 637–652; 1995, DOI 10.1046/j.1365-313X.1995.08050637.x.

    PubMed  Google Scholar 

  • Kittiwongwattana C.; Lutz K. A.; Clark M.; Maliga P. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol 64: 137–143; 2007, DOI 10.1007/s11103-007-9140-4.

    PubMed  Google Scholar 

  • Kondrák M.; van der Meer I. M.; Bánfalvi Z. Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15: 729–737; 2006, DOI 10.1007/s11248-006-9021-7.

    PubMed  Google Scholar 

  • Konieczka J. H.; Paek A.; Jayaram M.; Voziyanov Y. Recombination of hybrid target sites by binary combinations of Flp variants: mutations that foster interprotomer collaboration and enlarge substrate tolerance. J. Mol. Biol 339: 365–378; 2004, DOI 10.1016/j.jmb.2004.03.060.

    PubMed  Google Scholar 

  • Kopertekh L.; Jüttner G.; Schiemann J. PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol. Biol 55: 491–500; 2004, DOI 10.1007/s11103-004-0237-8.

    PubMed  Google Scholar 

  • Kopertekh L.; Schiemann J. Agroinfiltration as a tool for transient expression of Cre recombinase in vivo. Transgenic Res 14: 793–798; 2005, DOI 10.1007/s11248-005-8293-7.

    PubMed  Google Scholar 

  • Lee G.; Saito I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216: 55–65; 1998, DOI 10.1016/S0378-1119(98)00325-4.

    PubMed  Google Scholar 

  • Li, Z.; Xing, A.; Moon, B. P.; Burgoyne, S. A.; Guida, A. D.; Liang, H.; et al. A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol. Biol 65: 329–341; 2007, DOI 10.1007/s11103-007-9223-2.

    PubMed  Google Scholar 

  • Liu H.-K.; Yang C.; Wei Z.-H. Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168: 997–1003; 2005, DOI 10.1016/j.plantsci.2004.11.021.

    Google Scholar 

  • Lloyd A. M.; Davis R. W. Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet 242: 653–657; 1994, DOI 10.1007/BF00283419.

    PubMed  Google Scholar 

  • Luo H.; Lyznik L. A.; Gidoni D.; Hodges T. K. FLP-mediated recombination for use in hybrid plant production. Plant J 23: 423–430; 2000, DOI 10.1046/j.1365-313x.2000.00782.x.

    PubMed  Google Scholar 

  • Luo H.; Kausch A. P. Application of FLP/FRT site-specific DNA recombination system in plants. Genet. Eng. (N Y) 24: 1–16; 2002.

    Google Scholar 

  • Luo, K.; Duan, H.; Zhao, D.; Zheng, X.; Deng, W.; Chen, Y.; et al. ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol. J 5: 263–274; 2007, DOI 10.1111/j.1467-7652.2006.00237.x.

    PubMed  Google Scholar 

  • Lutz K. A.; Corneille S.; Azhagiri A. K.; Svab Z.; Maliga P. A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37: 906–913; 2004, DOI 10.1111/j.1365-313X.2004.02015.x.

    PubMed  Google Scholar 

  • Lutz K. A.; Maliga P. Construction of marker-free transplastomic plants. Curr. Opin. Biotechnol 18: 107–114; 2007, DOI 10.1016/j.copbio.2007.02.003.

    PubMed  Google Scholar 

  • Lyznik L. A.; Gordon-Kamm W. J.; Tao Y. Site-specific recombination for genetic engineering in plants. Plant Cell Rep 21: 925–932; 2003, DOI 10.1007/s00299-003-0616-7.

    PubMed  Google Scholar 

  • Lyznik L. A.; Hirayama L.; Rao K. V.; Abad A.; Hodges T. K. Heat-inducible expression of FLP gene in maize cells. Plant J 8: 177–186; 1995, DOI 10.1046/j.1365-313X.1995.08020177.x.

    PubMed  Google Scholar 

  • Lyznik L. A.; Mitchell J. C.; Hirayama L.; Hodges T. K. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res 21: 969–975; 1993, DOI 10.1093/nar/21.4.969.

    PubMed  Google Scholar 

  • Lyznik L. A.; Rao K. V.; Hodges T. K. FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24: 3784–3789; 1996, DOI 10.1093/nar/24.19.3784.

    PubMed  Google Scholar 

  • Marillonnet S.; Giritch A.; Gils M.; Kandzia R.; Klimyuk V.; Gleba Y. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. U S A 101: 6852–6857; 2004, DOI 10.1073/pnas.0400149101.

    PubMed  Google Scholar 

  • Marjanac G.; De Paepe A.; Peck I.; Jacobs A.; De Buck S.; Depicker A. Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 17: 239–250; 2008, DOI 10.1007/s11248-007-9096-9.

    PubMed  Google Scholar 

  • Matsunaga E.; Sugita K.; Ebinuma H. Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Mol. Breed 10: 95–106; 2002, DOI 10.1023/A:1020308216747.

    Google Scholar 

  • Matsuzaki H.; Nakajima R.; Nishiyama J.; Araki H.; Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J. Bacteriol 172: 610–618; 1990.

    PubMed  Google Scholar 

  • McCormac A. C.; Elliott M. C.; Chen D. F. pBECKS2000: a novel plasmid series for the facile creation of complex binary vectors, which incorporates “clean-gene” facilities. Mol. Gen. Genet 261: 226–235; 1999, DOI 10.1007/s004380050961.

    PubMed  Google Scholar 

  • Mlynárová L.; Conner A. J.; Nap J. P. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4: 445–452; 2006, DOI 10.1111/j.1467-7652.2006.00194.x.

    PubMed  Google Scholar 

  • Moore S. K.; Srivastava V. Efficient deletion of transgenic DNA from complex integration locus of rice mediated by Cre/lox recombination system. Crop Sci 46: 700–705; 2006, DOI 10.2135/cropsci2005.08-0289.

    Google Scholar 

  • Odell J.; Caimi P.; Sauer B.; Russell S. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet 223: 369–378; 1990, DOI 10.1007/BF00264442.

    PubMed  Google Scholar 

  • Onouchi, H.;Yokoi, K.; Machida, C.; Matsuzaki, H.; Oshima, Y.; Matsuoka, K.; et al. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19: 6373–6378; 1991, DOI 10.1093/nar/19.23.6373.

    PubMed  Google Scholar 

  • Onouchi H.; Nishihama R.; Kudo M.; Machida Y.; Machida C. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol. Gen. Genet 247: 653–660; 1995, DOI 10.1007/BF00290396.

    PubMed  Google Scholar 

  • Ow D. W. The right chemistry for marker gene removal. Nat. Biotechnol 19: 115–116; 2001, DOI 10.1038/84362.

    PubMed  Google Scholar 

  • Ow D. W. Recombinase-directed plant transformation for the post-genomic era. Plant Mol. Biol 48: 183–200; 2002, DOI 10.1023/A:1013718106742.

    PubMed  Google Scholar 

  • Ow D. W. Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev. Biol., Plant 41: 213–219; 2005, DOI 10.1079/IVP2004610.

    Google Scholar 

  • Ow D. W. GM maize from site-specific recombination technology, what next. Curr. Opin. Biotechnol 18: 115–120; 2007, DOI 10.1016/j.copbio.2007.02.004.

    PubMed  Google Scholar 

  • Que Q.; Wang H.-Y.; Jorgensen R. A. Distinct patterns of pigment suppression are produced by allelic sense and antisense chalcone synthase transgenes in petunia flowers. Plant. J 13: 401–409; 1998, DOI 10.1046/j.1365-313X.1998.00038.x.

    Google Scholar 

  • Radhakrishnan P.; Srivastava V. Utility of the FLP-FRT recombination system for genetic manipulation of rice. Plant Cell. Rep 23: 721–726; 2005, DOI 10.1007/s00299-004-0876-x.

    PubMed  Google Scholar 

  • Rommens C. M. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J. Agric. Food. Chem 55: 4281–4288; 2007, DOI 10.1021/jf0706631.

    PubMed  Google Scholar 

  • Rommens C. M.; Haring M. A.; Swords K.; Davies H. V.; Belknap W. R. The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12: 397–403; 2007, DOI 10.1016/j.tplants.2007.08.001.

    PubMed  Google Scholar 

  • Rufer A. W.; Sauer B. Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res 30: 2764–2771; 2002, DOI 10.1093/nar/gkf399.

    PubMed  Google Scholar 

  • Russell, J. P.; Chang, D. W.; Tretiakova, A.; Padidam, M. Phage Bxb1 integrase mediates highly efficient site-specific recombination in mammalian cells. Biotechniques40: 460–464; 2006.

    PubMed  Google Scholar 

  • Russell S. H.; Hoopes J. L.; Odell J. T. Directed excision of a transgene from the plant genome. Mol. Gen. Genet 234: 49–59; 1992.

    PubMed  Google Scholar 

  • Santoro S. W.; Schultz P. G. Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99: 4185–4190; 2002, DOI 10.1073/pnas.022039799.

    PubMed  Google Scholar 

  • Saraf-Levy, T.; Santoro, S. W.; Volpin, H.; Kushnirsky, T.; Eyal, Y.; Schultz, P. G.; et al. Site-specific recombination of asymmetric lox sites mediated by a heterotetrameric Cre recombinase complex. Bioorg. Med. Chem 14: 3081–3089; 2006, DOI 10.1016/j.bmc.2005.12.016.

    PubMed  Google Scholar 

  • Sarkar I.; Hauber I.; Hauber J.; Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316: 1912–1915; 2007, DOI 10.1126/science.1141453.

    PubMed  Google Scholar 

  • Sauer B. Cre/lox: one more step in the taming of the genome. Endocrine 19: 221–228; 2002, DOI 10.1385/ENDO:19:3:221.

    PubMed  Google Scholar 

  • Schaart J. G.; Krens F. A.; Pelgrom K. T.; Mendes O.; Rouwendal G. J. Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol. J 2: 233–240; 2004, DOI 10.1111/j.1467-7652.2004.00067.x.

    PubMed  Google Scholar 

  • Sclimenti C. R.; Thyagarajan B.; Calos M. P. Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res 29: 5044–5051; 2001, DOI 10.1093/nar/29.24.5044.

    PubMed  Google Scholar 

  • Sonti R. V.; Tissier A. F.; Wong D.; Viret J. F.; Signer E. R. Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol. Biol 28: 1127–1132; 1995, DOI 10.1007/BF00032673.

    PubMed  Google Scholar 

  • Sreekala C.; Wu L.; Gu K.; Wang D.; Tian D.; Yin Z. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24: 86–94; 2005, DOI 10.1007/s00299-004-0909-5.

    PubMed  Google Scholar 

  • Srivastava V.; Anderson O. A.; Ow D. W. Single copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. U S A 96: 11117–11121; 1999, DOI 10.1073/pnas.96.20.11117.

    PubMed  Google Scholar 

  • Srivastava V.; Ow D. W. Single copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol 46: 561–566; 2001, DOI 10.1023/A:1010646100261.

    PubMed  Google Scholar 

  • Srivastava V.; Ow D. W. Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol. Biol 52: 661–668; 2003, DOI 10.1023/A:1024839617490.

    PubMed  Google Scholar 

  • Srivastava V.; Ow D. W. Marker-free site-specific gene integration in plants. Trends Biotechnol 22: 627–629; 2004, DOI 10.1016/j.tibtech.2004.10.002.

    PubMed  Google Scholar 

  • Sternberg N.; Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol 150: 467–486; 1981, DOI 10.1016/0022-2836(81)90375-2.

    PubMed  Google Scholar 

  • Stuurman J.; de Vroomen M. J.; Nijkamp H. J.; van Haaren M. J. Single-site manipulation of tomato chromosomes in vitro and in-vivo using Cre-lox site-specific recombination. Plant Mol. Biol 32: 901–913; 1996, DOI 10.1007/BF00020487.

    PubMed  Google Scholar 

  • Sugita K.; Kasahara T.; Matsunaga E.; Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22: 461–469; 2000, DOI 10.1046/j.1365-313X.2000.00745.x.

    PubMed  Google Scholar 

  • Thomason L. C.; Calendar R.; Ow D. W. Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol. Genet. Genomics 265: 1031–1038; 2001, DOI 10.1007/s004380100498.

    PubMed  Google Scholar 

  • Thomson J. G.; Ow D. W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44: 465–476; 2006, DOI 10.1002/dvg.20237.

    PubMed  Google Scholar 

  • Thorpe H. M.; Smith M. C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. U S A 95: 5505–5510; 1998, DOI 10.1073/pnas.95.10.5505.

    PubMed  Google Scholar 

  • Thorpe H. M.; Wilson S. E.; Smith M. C. Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol. Microbiol 38: 232–241; 2000, DOI 10.1046/j.1365-2958.2000.02142.x.

    PubMed  Google Scholar 

  • Thyagarajan B.; Olivares E. C.; Hollis R. P.; Ginsburg D. S.; Calos M. P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol 21: 3926–3934; 2001, DOI 10.1128/MCB.21.12.3926-3934.2001.

    PubMed  Google Scholar 

  • Toriyama K.; Chiba A.; Nakagawa Y. Visualization of somatic deletions mediated by R/RS site-specific recombination and induction of germinal deletions caused by callus differentiation and regeneration in rice. Plant Cell Rep 21: 605–610; 2003.

    PubMed  Google Scholar 

  • van Haaren M. J. J.; Ow D. W. Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol. Biol 23: 525–533; 1993, DOI 10.1007/BF00019300.

    PubMed  Google Scholar 

  • Verweire D.; Verleyen K.; De Buck S.; Claeys M.; Angenon G. Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145: 1220–1231; 2007, DOI 10.1104/pp.107.106526.

    PubMed  Google Scholar 

  • Vetter D.; Andrews B. J.; Roberts-Beatty L.; Sadowski P. D. Site-specific recombination of yeast 2-micron DNA in vitro. Proc. Natl. Acad. Sci. U S A 80: 7284–7288; 1983, DOI 10.1073/pnas.80.23.7284.

    PubMed  Google Scholar 

  • Voziyanov Y.; Konieczka J. H.; Stewart A. F.; Jayaram M. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J. Mol. Biol 326: 65–76; 2003, DOI 10.1016/S0022-2836(02)01364-5.

    PubMed  Google Scholar 

  • Wang Y.; Chen B.; Hu Y.; Li J.; Lin Z. Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system. Transgenic Res 14: 605–614; 2005, DOI 10.1007/s11248-005-0884-9.

    PubMed  Google Scholar 

  • Zhang W.; Subbarao S.; Addae P.; Shen A.; Armstrong C.; Peschke V.; Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet 107: 1157–1168; 2003, DOI 10.1007/s00122-003-1368-z.

    PubMed  Google Scholar 

  • Zhang Y.; Li H.; Ouyang B.; Lu Y.; Ye Z. Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol. Lett 28: 1247–1253; 2006, DOI 10.1007/s10529-006-9081-z.

    PubMed  Google Scholar 

  • Zuo J.; Niu Q. W.; Moller S. G.; Chua N. H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol 19: 157–161; 2001, DOI 10.1038/84428.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Victor Gaba, The Volcani Center, Israel, and Michele P. Calos, Stanford University, Stanford, CA, USA, for fruitful comments on the manuscript, with additional thanks to Victor Gaba for his encouragement and to Ms. Cecilia Cohen for creating the figures. This paper is a contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 136/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gidoni.

Additional information

Editor: Prakash Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gidoni, D., Srivastava, V. & Carmi, N. Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell.Dev.Biol.-Plant 44, 457–467 (2008). https://doi.org/10.1007/s11627-008-9140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9140-3

Keywords

Navigation