Skip to main content
Log in

Phosphomannose isomerase: An efficient selectable marker for plant transformation

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of mannose 6-phosphate and fructose 6-phosphate. Plant cells lacking this enzyme are incapable of surviving on synthetic medium containing mannose as a carbon source. Maize, wheat and barley plants, genetically modified to express the Escherichia coli manA gene (pmi) under the control of a plant promoter, were able to survive selection on mannose-containing medium. Transformation frequencies averaged 45% for maize transformation via Biolistics 35% for maize Agrobacterium-mediated transformation, 20% for wheat, 3% for barley, and 2% for watermelon transformation. Moreover, the frequencies exceeded those obtained for maize and wheat using the pat or bar gene with Basa® selection. A preliminary safety assessment has been conducted for PMI. Purified PMI protein demonstrates no adverse, effects in an acute mouse toxicity test. Purified PMI protein was readily digested in simulated mammalian gastric and intestinal fluids. Plants derived from surgar beet and corn cells that had been genetically modified to express the E. coli manA gene were evaluated for biochemical changes in mannose-associated pathways. No detectable changes in glycoprotein profiles were detected in PMI-transformed plants as compared to nontransgenic controls. The yield and nutritional composition of grain from PMI-transformed corn plants compared to their non-transformed isogenic counterparts were also determined and no statistically significant differences were found. The inherent safety of a system based on simple sugar metabolism coupled with high transformation frequencies for monocots make pmi and ideal selectable marker for plant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers, D. H. In: Johnson, L. R., ed. Physiology of the gastrointestinal tract: Digestion and absorption of carbohydrates and proteins. New York: Raven Press; 1997:1359–1487.

    Google Scholar 

  • Bojsen, K.; Donaldson, I.; Haldrup, A.; Joersbo, M.; Kreiberg, J. D.; Nielsen, J.; Okkels, F. T.; Petersen, S. C. Mannose or xylose based positive selection. PCT Application Number WO 94/20627; 1994.

  • Christensen, A. H.; Sharrock, R. A.; Quail, P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplast by electroporation. Plant Mol. Biol. 18:675–689; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Collins, L. V.; Hackett, J. Sequence of the phosphomannose isomerase-encoding gene of Salmonella typhimurium. Gene 103:135–136; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Darzins, A.; Frantz, B.; Vanags, R. I.; Chakrabarty, A. M. Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli gene manA. Gene 42:293–302; 1986.

    Article  PubMed  CAS  Google Scholar 

  • deLonlay, P.; Cuer, M.; Barrot, S.; Castelnau, P.; Touati, G.; Durand, G.; Saudubray, J. M.; Seta, N. Hypersinsulinemic hypoglycemia as presenting symtom in phosphomannose isomerase deficiency: a new presentation of carbohydrate-deficient glycoprotein syndrome treatable by mannose. J. Inher. Metab. Dis. 21:96; 1998.

    Google Scholar 

  • Franck-Oberaspach, S. L.; Keller, B. Consequences of classical and biotechnological resistance breeding for food toxicology and allergenicity. Plant Breeding 116:1–17; 1997.

    Article  CAS  Google Scholar 

  • Goldsworthy, A.; Street, H. E. The carbohydrate nutrition of tomato roots VIII. The mechanism of the inhibition by d-mannose of the repiration of excised roots. Ann. Bot. 29:45–58; 1965.

    CAS  Google Scholar 

  • Graham, L. A.; Liou, Y.-C.; Walker, V. K.; Davies, P. L. Hyperactive antifreeze protein from beetles. Nature 388:728–729; 1997.

    Article  Google Scholar 

  • Hansen, G.; Wright, M. S. Recent advances in the transformation of plants. Trends Plant Sci. 4:226–231; 1999.

    Article  PubMed  Google Scholar 

  • Herold, A.; Lewis, D. H. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79:1–40; 1977.

    Article  CAS  Google Scholar 

  • Jang, J. C.; Sheen, J. Sugar, sensing in higher plants. Plant Cell 6:1665–1679; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J. C.; Sheen, J. Surgar sensing in higher plants. Trends Plant Sci. 2:208–214; 1997.

    Article  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiberg, J.; Petersen, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breeding 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Keir, G.; Winchester, B. G.; Clayton, P. Carbohydrate-deficient glycoprotein syndromes: inborn errors for protein glycosylation. Ann. Clin. Biol. 36:20–36; 1999.

    CAS  Google Scholar 

  • Kramer, C.; DiMaio, J.; Carswell, G.; Shillito, R. D. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458; 1993.

    Article  CAS  Google Scholar 

  • Lee, B. T.; Matheson, N. K. Phosphomannosisomerase and phosphogluco-isomerase in seeds of Cassia coluteoides and some other legumes that synthesize galactomannan. Phytochemistry 23:983–987; 1984.

    Article  CAS  Google Scholar 

  • Melanson, D.; Roussy, I.; Geneviève Hansen. The use of phosphomannose isomerase as a selectable marker to recover transgenic arabidopsis plants. Abstract from 20th Annual Crown Gall Conference Nov. 1999 p. 59. Houston, Texas.

  • Miles, J. S.; Guest, J. R. Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. R.; Street, H. E. The carbohydrate nutrition of tomato roots. VII. Sugars, sugar phosphate and sugar alcohols as respiratory substrates for exised roots. Ann. Bot. 23:89–105; 1959.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962

    Article  CAS  Google Scholar 

  • Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.

    Article  CAS  Google Scholar 

  • Proudfoot, A. E. I.; Payton, M. A.; Wells, T. N. C. Purification and characterization of fungal and mammalian phosphomannose isomerases. Protein Chem. 13:619–627; 1994a.

    Article  CAS  Google Scholar 

  • Proudfoot, A. E. I.; Turcatti, G.; Wells, T. N. C.; Payton, M. A.; Smith, D. J. Purification, cDNA cloning and heterologous expression of human phosphomannose isomerase. Eur. J. Biochem. 219:415–423; 1994b.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M.; Arnold, W.; Niemann, A.; Kleickmann, A.; Pühler, A. The Rhizobium meliloti pmi gene encodes a new type of phosphomannose isomerase. Gene 122:35–43; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Shinabarger, D.; Berry, A.; May, T. B.; Rothmel, R.; Fialho, A.; Chakrabarty, A. M. Purification and characterization of phosphomannse isomerase-guanosine diphospho-d-mannose, pyrophosphorylase. J. Biol. Chem. 266:2080–2088; 1991.

    PubMed  CAS  Google Scholar 

  • Smith, D. J.; Proudfoot, A.; Friedli, L.; Klig, L. S.; Paravicini, G.; Payton, M. A. PMI40, an intron-containing gene required for early steps in yeast mannosylation. Mol. Cell. Biol. 12:2924–2930; 1992.

    PubMed  CAS  Google Scholar 

  • Stein, J. C.; Hansen, G. Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 121:1–9; 1999.

    Article  Google Scholar 

  • Stenlid, G. Toxic effects of d-mannose, 2-desoxy-d-glucose, and d-glucosamine upon respiration and ion absorption in wheat roots. Physiol. Plant. 7:173–181; 1954.

    Article  Google Scholar 

  • Taylor, S. L.; Nordlee, J. A.; Bush, R. K. In: Ginley, J. W.; Robinson, S. F.; Armstrong, D. J., eds. Food Safety Assessment ACS Symposium Series 484. Food Allergies Washington DC: ACS; 1992:316–329.

    Google Scholar 

  • United States Pharmacopoeia, The National Formulary USP XXII, NF XVII, US Pharmacopoeial Convention, Inc. Easton, PA: Mack Printing Co.; 1990:1788.

    Google Scholar 

  • Wheeler, G. L.; Jones, M. A.; Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wilmink, A.; Dons, J. J. M. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. Biol. Rep. 11:165–185; 1993.

    CAS  Google Scholar 

  • Wright, M.; Dawson, J.; Dunder, E.; Sutie, J.; Reed, J.; Kramer, C.; Chang, Y.; Wang, H.; Artim-Moore, L.; Novitzky, R.: Efficient Biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 2001 (in press).

  • Yunginger, J. W. In: Metcalfe, D.; Sampson, H. A.; Simon, R. A., eds. Good allergy, adverse reactions to foods and food additives. Food antigens. Boston: Blackwell Scientific Publications; 1991:36–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, J., Privalle, L., Powell, M.L. et al. Phosphomannose isomerase: An efficient selectable marker for plant transformation. In Vitro Cell.Dev.Biol.-Plant 37, 127–132 (2001). https://doi.org/10.1007/s11627-001-0024-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0024-z

Key words

Navigation