Skip to main content
Log in

Improved FLP Recombinase, FLPe, Efficiently Removes Marker Gene from Transgene Locus Developed by Cre–lox Mediated Site-Specific Gene Integration in Rice

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Site-specific recombination systems, such as FLP–FRT and Cre–lox, carry out precise recombination reactions on their respective targets in plant cells. This has led to the development of two important applications in plant biotechnology: marker-gene deletion and site-specific gene integration. To draw benefits of both applications, it is necessary to implement them in a single transformation process. In order to develop this new process, the present study evaluated the efficiency of FLP–FRT system for excising marker gene from the transgene locus developed by Cre–lox mediated site-specific integration in rice. Two different FLP recombinases, the wild-type FLP (FLPwt) and its thermostable derivative, FLPe, were used for the excision of marker gene flanked by FLP recombination targets (FRT). While marker excision mediated by FLPwt was undetectable, use of FLPe resulted in efficient marker excision in a number of transgenic lines, with the relative efficiency reaching up to ~100%. Thus, thermo-stability of FLP recombinase in rice cells is critical for efficient site-specific recombination, and use of FLPe offers practical solutions to FLP–FRT-based biotechnology applications in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Vetten, N., Wolters, A. M., Raemakers, K., van der Meer, I., ter Stege, R., et al. (2003). A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotechnology, 21, 439–442.

    Article  Google Scholar 

  2. Lemaux, P. G. (2009). Genetically engineered plants and foods: A scientist’s analysis of the issues (Part II). Annual Review of Plant Biology, 60, 511–559.

    Article  CAS  Google Scholar 

  3. Brasilerio, A., & Aragao, F. (2001). Marker genes for in vitro selection of transgenic plants. Journal of Plant Biotechnology, 3, 113–121.

    Google Scholar 

  4. Davies, G. J., Kilby, N. J., Riou-Khamlichi, C., & Murray, J. A. H. (1999). Somatic and germinal inheritance of an FLP-mediated deletion in transgenic tobacco. Journal of Experimental Botany, 50, 1447–1456.

    Article  CAS  Google Scholar 

  5. Gidoni, D., Bar, M., & Gilboa, N. (2001). FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Research, 10, 317–328.

    Article  CAS  Google Scholar 

  6. Kondrak, M., van der Meer, I. M., & Banfalvi, Z. (2006). Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Research, 15, 729–737.

    Article  CAS  Google Scholar 

  7. Thomson, J. G., Yau, Y.-Y., Blanvillain, R., Chiniquy, D., Thilmony, R., & Ow, D. W. (2009). ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Research, 18, 237–248.

    Article  CAS  Google Scholar 

  8. Kumar, S., & Thompson, W. F. (2009). Simultaneous excision of two transgene flanking sequences and resolution of complex integration loci. Plant Molecular Biology, 69, 23–32.

    Article  CAS  Google Scholar 

  9. Woo, H. J., Cho, H. S., Lim, S. H., Shin, K. S., Lee, S. M., et al. (2009). Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Research, 18, 455–465.

    Article  CAS  Google Scholar 

  10. Thomson, J. G., Chan, R., Thilmony, R., Yau, Y. Y., & Ow, D. W. (2010). PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnology, 10, 17.

    Article  Google Scholar 

  11. Albert, H., Dale, E. C., Lee, E., & Ow, D. W. (1995). Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant Journal, 7, 649–659.

    Article  CAS  Google Scholar 

  12. Srivastava, V., Ariza-Nieto, M., & Wilson, A. J. (2004). Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnology Journal, 2, 169–179.

    Article  CAS  Google Scholar 

  13. Louwerse, J. D., van Lier, M. C. M., van der Steen, D. M., de Vlaam, C. M. T., et al. (2007). Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiology, 145, 1282–1293.

    Article  CAS  Google Scholar 

  14. Srivastava, V., & Ow, D. W. (2004). Marker-free site-specific gene integration in plants. Trends in Biotechnology, 22, 627–629.

    Article  CAS  Google Scholar 

  15. Nanto, K., & Ebinuma, H. (2008). Marker-free site-specific integration plants. Transgenic Research, 17, 337–344.

    Article  CAS  Google Scholar 

  16. O’Gorman, S., Fox, D. T., & Wahl, G. M. (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251, 1351–1355.

    Article  Google Scholar 

  17. Hu, Q., Kononowicz-Hodges, H., Nelson-Vasilchik, K., Viola, D., Zeng, P. Y., et al. (2008). FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnology Journal, 6, 176–188.

    Article  CAS  Google Scholar 

  18. Kilby, N. J., Davies, G. J., Snaith, M. R., & Murray, J. A. H. (1995). FLP recombinase in transgenic plants—constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant Journal, 8, 637–652.

    Article  CAS  Google Scholar 

  19. Fladung, M., Schenk, T. M. H., Polak, O., & Becker, D. (2010). Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Tree Genetics and Genomes, 6, 205–217.

    Article  Google Scholar 

  20. Hajdukiewicz, P. T. J., Allison, L. A., & Maliga, P. (1997). The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO Journal, 16, 4041–4048.

    Article  CAS  Google Scholar 

  21. Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant Journal, 6, 271–282.

    Article  CAS  Google Scholar 

  22. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  23. Radhakrishnan, P., & Srivastava, V. (2005). Utility of the FLP–FRT recombination system for genetic manipulation of rice. Plant Cell Reports, 23, 721–726.

    Article  CAS  Google Scholar 

  24. Raymond, C. S., & Soriano, P. (2007). High-Efficiency FLP and Phi C31 site-specific recombination in mammalian cells. Plos One, 2, e162.

    Article  Google Scholar 

  25. Lyznik, L. A., Rao, K. V., & Hodges, T. K. (1996). FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Research, 24, 3784–3789.

    Article  CAS  Google Scholar 

  26. Dale, E. C., & Ow, D. W. (1991). Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences of the United States of America, 88, 10558–10562.

    Article  CAS  Google Scholar 

  27. Kerbach, S., Lorz, H., & Becker, D. (2005). Site-specific recombination in Zea mays. Theoretical and Applied Genetics, 111, 1608–1616.

    Article  CAS  Google Scholar 

  28. Li, Z. S., Xing, A. Q., Moon, B. P., McCardell, R. P., Mills, K., & Falco, S. C. (2009). Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiology, 151, 1087–1095.

    Article  CAS  Google Scholar 

  29. Lloyd, A. M., & Davis, R. W. (1994). Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Molecular and General Genetics, 242, 653–657.

    CAS  Google Scholar 

  30. Liu, H. K., Yang, C., & Wei, Z. M. (2005). Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Science, 168, 997–1003.

    Article  CAS  Google Scholar 

  31. Zhang, Y. Y., Li, H. X., Bo, O. Y., Lu, Y. G., & Ye, Z. B. (2006). Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnology Letters, 28, 1247–1253.

    Article  CAS  Google Scholar 

  32. Mlynarova, L., Conner, A. J., & Nap, J. P. (2006). Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnology Journal, 4, 445–452.

    Article  CAS  Google Scholar 

  33. Verweire, D., Verleyen, K., De Buck, S., Claeys, M., & Angenon, G. (2007). Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiology, 145, 1220–1231.

    Article  CAS  Google Scholar 

  34. Bar, M., Leshem, B., Gilboa, N., & Gidoni, D. (1996). Visual characterization of recombination at FRT-gusA loci in transgenic tobacco mediated by constitutive expression of the native FLP recombinase. Theoretical and Applied Genetics, 93, 407–413.

    Article  CAS  Google Scholar 

  35. Sonti, R. V., Tissier, A. F., Wong, D., Viret, J. F., & Signer, E. R. (1995). Activity of the yeast FLP recombinase in Arabidopsis. Plant Molecular Biology, 28, 1127–1132.

    Article  CAS  Google Scholar 

  36. Volkert, F. C., & Broach, J. R. (1986). Site-specific recombination promotes plasmid amplification in yeast. Cell, 46, 541–550.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Biotechnology Risk Assessment Program competitive grant # 2006-33120-17718 and 2010-33522-21715 from the USDA National Institute of Food and Agriculture (NIFA). The authors are grateful to Dr. J. Thomson, WRRC-USDA for providing FLPe and FLPo clones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbudak, M.A., Srivastava, V. Improved FLP Recombinase, FLPe, Efficiently Removes Marker Gene from Transgene Locus Developed by Cre–lox Mediated Site-Specific Gene Integration in Rice. Mol Biotechnol 49, 82–89 (2011). https://doi.org/10.1007/s12033-011-9381-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9381-y

Keywords

Navigation