Skip to main content
Log in

Genetic transformation of wheat: current status and future prospects

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Genetic transformation is a reverse genetics tool for validation of target genes and crop improvement. However, due to its low efficiency and genotype dependency, wheat is considered a recalcitrant plant for genetic transformation. During the last 20 years, various in vitro and in planta transformation methods have been reported in wheat. Until now, biolistic particle and Agrobacterium-mediated wheat transformation methods using immature embryos as explants have been the two major transformation approaches. In addition to immature embryos, other explant types, such as mature embryos, anther-derived calli, inflorescences, apical meristems, and other floral organs, have been employed; however, they need further optimization. In addition to the common marker genes, such as bar, hpt and gus, other effective markers, ALS, AtMYB12 and pmi, have been successfully used for selection of positive transgenic plants. Numerous agronomic trait genes such as biotic stress resistance or tolerance genes have been transferred into wheat plants. Future prospects, such as recipient wheat cultivars and explants, marker free issues, and transgene silencing, are discussed. The objective of this review is to summarize current successful techniques for wheat transformation and stimulate further research into long-term wheat improvement by genetic engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abranches R, Shultz RW, Thompson W, Allen GC (2005) Matrix attachment regions and regulated transcription increase and stabilize transgene expression. Plant Biotechnol J 3:535–543

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Loar S, Steber C, Zale J (2009) Floral transformation of wheat. Methods Mol Biol 478:105–113

    Article  PubMed  Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK (1996a) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12–17

    Article  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996b) Integration and expression of the high molecular weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    Article  PubMed  CAS  Google Scholar 

  • Bhalla PL (2006) Genetic engineering of wheat—current challenges and opportunities. Trends Biotechnol 24:305–311

    Article  PubMed  CAS  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879

    Article  PubMed  CAS  Google Scholar 

  • Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9:408–417

    Article  PubMed  CAS  Google Scholar 

  • Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760

    Article  CAS  Google Scholar 

  • Chen L, Zhang ZY, Liang HX, Liu HX, Du LP, Xu HJ, Xin ZY (2008) Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot 59:4195–4204

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Hu TC, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  • Clemente T, Mitra A (2005) Genetic engineering of wheat: protocols and use to enhance stress tolerance. In: Liang GH, Skinner DZ (eds) Genetically modified crops: their development, uses, and risks. Haworth Press, New York, pp 131–163

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    Article  PubMed  CAS  Google Scholar 

  • Dong N, Liu X, Lu Y, Du LP, Xu HJ, Xin ZY, Zhang ZY (2010) Overexpression of TaPIEP1, a pathogen-induced ERF of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics 10:215–226

    Article  PubMed  CAS  Google Scholar 

  • Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ (2010) Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 8:821–834

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    Article  CAS  Google Scholar 

  • Gao SQ, Xu HJ, Cheng XG, Chen M, Xu ZS, Li LC, Ye XG, Du LP, Hao XY, Ma YZ (2005) Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). China Sci Bull 50:2714–2723

    Article  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zhang L, Zhou S, Wang C, Deng X, Zhang H, Yang G, Javeed H, He G (2011) AtMYB12 gene: a novel visible marker for wheat transformation. Mol Biol Rep 38:183–190

    Article  PubMed  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol 26:44–52

    Article  CAS  Google Scholar 

  • Harholt J, Bach IC, Lind-Bouquin S, Nunan KJ, Madrid SM, Brinch-Pedersen H, Holm PB, Scheller HV (2010) Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm. Plant Biotechnol J 8(3):351–362

    Article  PubMed  CAS  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61(6):1567–1581

    Article  PubMed  CAS  Google Scholar 

  • Hess D, Dressler K, Nimnrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat. Plant Sci 72:233–244

    Article  CAS  Google Scholar 

  • Houben A, Schubert I (2007) Engineered plant minichromosomes: a resurrection of B chromosomes. Plant Cell 19:2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Chen M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Janakiraman V, Steinau M, Mccoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol Plant 38:404–414

    Article  CAS  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    Article  PubMed  CAS  Google Scholar 

  • Jauhar PP (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1849

    Article  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    PubMed  CAS  Google Scholar 

  • Khurana J, Chugh A, Khurana P (2002) Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum diccocum Schuble). Indian J Exp Biol 40:1295–1303

    PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2:631–638

    Article  CAS  Google Scholar 

  • Li JR, Zhao W, Li QZ, Ye XG, An BY, Li X, Zhang XS (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Yi Chuan Xue Bao 32:846–854

    PubMed  CAS  Google Scholar 

  • Li Z, Zhou MP, Zhang ZY, Ren LJ, Du LP, Zhang BQ, Xu HJ, Xin ZY (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    Article  PubMed  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    Article  PubMed  CAS  Google Scholar 

  • Mitic N, Nikolic R, Ninkovic S, Miljus-Djukic J, Neskovic M (2004) Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biol Plant 48:179–184

    Article  CAS  Google Scholar 

  • Morino K, Olsen OA, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17(3):275–285

    Article  PubMed  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with 2 distinct gene constructs. Plant J 5:285–297

    Article  CAS  Google Scholar 

  • Ogawa T, Kawahigashi H, Toki S, Handa H (2008) Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Rep 27:1325–1331

    Article  PubMed  CAS  Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    PubMed  CAS  Google Scholar 

  • Ortiz JPA, Reggiardo MI, Ravizzin RA, Altabe SG, Cervigni GDL, Spitteler MA, Morata MM, Elias FE, VaUejos RH (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep 15:877–881

    Article  CAS  Google Scholar 

  • Parrott DL, Anderson AJ, Carman JG (2002) Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol Mol Pathol 60:59–69

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Fennell S, McLean S, Brito RM, Velazquez L, Salgado M, Olivares JJ, Hernandez R, Hoisington D (2000) Routine transformation system for use with CIMMYT wheat varieties. In: Koholi M, Francis M (eds) Application of biotechnologies to wheat breeding. Proceedings of a conference at La Estanzuela, Uruguay, 19–20 November 1998, Montevideo, pp 111–120

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  PubMed  CAS  Google Scholar 

  • Permingeat HR, Alvarez ML, Cervigni GDL, Ravizzini RA, Vallejos RH (2003) Stable wheat transformation obtained without selectable markers. Plant Mol Biol 52:415–419

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Org Cult 74:123–134

    Article  CAS  Google Scholar 

  • Regina A, Bird D, Topping D, Bowden S, Freeman J, Barsby T, Hashemi BK, Li Z, Rahman S, Morell M (2006) High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115–120

    Article  CAS  Google Scholar 

  • Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones HD, Lafiandra D (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144

    Article  PubMed  Google Scholar 

  • Shirley S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004) Production of c-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  Google Scholar 

  • Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629

    Article  PubMed  CAS  Google Scholar 

  • Stoykova P, Stoeva-Popova P (2011) PMI (manA) as a nonantibiotic selectable marker gene in plant Biotechnology. Plant Cell Tissue Organ Cult 105:141–148

    Article  CAS  Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170

    Article  PubMed  CAS  Google Scholar 

  • Takumi S, Shimada T (1996) Production of transgenic wheat through particle bombardment of scutellar tissues: frequency is influenced by culture duration. J Plant Physiol 149:418–423

    Article  CAS  Google Scholar 

  • Tamás C, Kisgyörgy BN, Rakszegi M, Wilkinson MD, Yang MS, Láng L, Tamás L, Bedo Z (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    Article  PubMed  Google Scholar 

  • Tao LL, Yin GX, Du LP, Shi ZY, She MY, Xu HJ, Ye XG (2011) Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agric Sci China 10:317–326

    Article  CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Google Scholar 

  • Vaucheret H, Fagrad M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  PubMed  CAS  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res 14:665–675

    Article  PubMed  CAS  Google Scholar 

  • Wang YL, Xu MX, Yin GX, Tao LL, Wang DW, Ye XG (2009) Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun 37:1–12

    Article  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084

    PubMed  CAS  Google Scholar 

  • Witrzens B, Brettell RI, Murray ER, McElroy D, Li Z, Dennis ES (1998) Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol 25:39–44

    Article  CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Wu HX, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. Durum) using additional virulence genes. Trans Res 17:425–436

    Article  CAS  Google Scholar 

  • Wu H, Doherty A, Jones HD (2009) Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods Mol Biol 478:93–103

    Article  PubMed  Google Scholar 

  • Xing A, Zhang Z, Shirley S, Paul S, Tom C (2000) The use of the two T-DNA binary system to drive marker-free transgenic soybeans. In Vitro Cell Dev Biol Plant 36:456–463

    Article  CAS  Google Scholar 

  • Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737–3746

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Cong L, He G, Chang J, Li K, Yang G (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67

    Article  PubMed  CAS  Google Scholar 

  • Yin GX, Wang YL, She MY, Du LP, Xu HJ, Ma JX, Ye XG (2011) Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China 10:9–17

    Article  CAS  Google Scholar 

  • Yu WC, Han FP, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Rybszynski JJ, Landenberg WG, Mitra A, French R (2000) An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Rep 18:959–966

    Article  Google Scholar 

  • Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  Google Scholar 

  • Zhou H, Arrowsmith JW, Fromm ME (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163

    CAS  Google Scholar 

  • Zhou H, Berg JD, Blank SE, Chay CA, Chen G, Eskelsen SR, Fry JE, Hoi S, Hu T, Isakson PJ, Lawton MB, Metz SG, Rempel CB, Ryerson DK, Sansone AP, Shook AL, Starke RJ, Tichota JM, Valenti SA (2003) Field efficacy assessment of transgenic roundup ready wheat. Crop Sci 43:1072–1075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard Akins and Sarah Caldwell-Hancock from Kansas State University for their critical revision of this manuscript, and thanks the funding source from Natural Science Foundation of China with Grant Number 30971776. This article is Contribution No. 11-339-J from the Kansas Agricultural Experimental Station, Kansas State University, Manhattan, Kansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ye, X., An, B. et al. Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6, 183–193 (2012). https://doi.org/10.1007/s11816-011-0213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-011-0213-0

Keywords

Navigation