Skip to main content
Log in

Plastid marker gene excision by the phiC31 phage site-specific recombinase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aadA :

Gene encoding aminoglycoside 3″-adenylytransferase

attB :

Bacterial attachment site

attP :

Phage attachment site

bar :

Gene conferring resistance to the herbicide bialaphos

Cre:

P1 phage site-specific recombinases

Int:

Integrase or phiC31 phage site-specific recombinase

int :

Gene encoding Int

ptDNA:

Plastid genome

PP–BamHI:

Fusion promoter containing the promoter of the plastid rrn operon and the plastid clpP gene

Prrn:

Promoter of the plastid rrn operon

rrn :

Plastid rRNA operon

TpsbA:

psbA gene 3′-UTR

clpP, trnI, trnV, rrn16 and 3′-rps12/7 :

Plastid genes

References

  • Ayliffe AM, Timmis JN (1992) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor Appl Genet 85:229–238

    Article  CAS  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–282

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Plant biotechnology: resistance management, metabolic engineering and molecular farming. Curr Opin Biotech 18 (in press); doi:10.1016/j.copbio.2006.12.001

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 72:171–178

    Article  Google Scholar 

  • Corneille S, Lutz KA, Azhagiri AK, Maliga P (2003) Identification of functional lox sites in the plastid genome. Plant J 35:753–762

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Calos MP (2004) Phage inetgrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PTJ, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    Article  PubMed  CAS  Google Scholar 

  • Herz S, Fussl M, Steiger S, Koop HU (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982

    Article  PubMed  CAS  Google Scholar 

  • Huang FC, Klaus SMJ, Herz S, Zuo Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Gen Genom 268:19–27

    Article  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Gen Genom 276:135–146

    Article  CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Huang FC, Golds TJ, Koop H-U (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kode V, Mudd E, Iamtham S, Day A (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Maliga P (2002) Over-expression of the clpP 5′-UTR in a chimeric context causes a mutant phenotype suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606

    Article  PubMed  CAS  Google Scholar 

  • Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Bosacchi MH, Maliga P (2006a) Plastid marker gene excision by transiently expressed CRE recombinase. Plant J 45:447–456

    Article  CAS  Google Scholar 

  • Lutz KA, Svab Z, Maliga P (2006b) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nature Protocols 1(2):900–910

    Article  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Mlynarova L, Libantova J, Vrba L, Nap JP (2002) The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296:129–137

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    Article  PubMed  CAS  Google Scholar 

  • Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510

    Article  PubMed  CAS  Google Scholar 

  • Thorpe HM, Wilson SE, Smith MCM (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38:232–241

    Article  PubMed  CAS  Google Scholar 

  • Tungsuchat T, Kuroda H, Narangajavana J, Maliga P (2006) Gene activation in plastids by the CRE site-specific recombinase. Plant Mol Biol 61:711–718

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the USDA Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524 to PM. Chokchai Kittiwongwattana is the recipient of a Ph.D. scholarship of the Thailand Commission on Higher Education. Mark Clark contributed to this project while supported by a Summer Undergraduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittiwongwattana, C., Lutz, K., Clark, M. et al. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64, 137–143 (2007). https://doi.org/10.1007/s11103-007-9140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9140-4

Keywords

Navigation