Skip to main content
Log in

CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.)

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)—CRISPR associated protein (Cas) technology is an effective tool for site-specific genome editing, used to precisely induce mutagenesis in different plant species including rice. Salinity is one of the most stressful environmental constraints affecting agricultural productivity worldwide. As plant adaptation to salinity stress is under polygenic control therefore, 51 rice genes have been identified that play crucial role in response to salinity. This review offers an exclusive overview of genes identified in rice genome for salinity stress tolerance. This will provide an idea to produce rice varieties with enhanced salt tolerance using the potentially efficient CRISPR-Cas technology. Several undesirable off-target effects of CRISPR-Cas technology and their possible solutions have also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data have been inlcuded in the manuscript and will be made available upon publication of the manuscript.

References

  1. Dharmaprabhakaran T, Karthikeyan S, Periyasamy M, Mahendran G (2020) Algal biodiesel-promising source to power CI engines. MaterToday 33(7):2870–2873. https://doi.org/10.1016/j.matpr.2020.02.775

    Article  CAS  Google Scholar 

  2. Chávez-Dulanto PN, Thiry AA, Glorio-Paulet P, Vögler O, Carvalho FP (2020) Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur 10(1):e259. https://doi.org/10.1002/fes3.259

    Article  Google Scholar 

  3. Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  4. de Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. In: Akinci S (ed) Responses of organisms to water stress. InTech, London, pp 67–94. https://doi.org/10.5772/54223

    Chapter  Google Scholar 

  5. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82(4):371–406. https://doi.org/10.1007/s12229-016-9173-y

    Article  Google Scholar 

  6. Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A (2019) CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 96(1):91–99. https://doi.org/10.1016/j.semcdb.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaj T, Sirk SJ, Shui Sl, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8(12):1–20. https://doi.org/10.1101/cshperspect.a023754

    Article  CAS  Google Scholar 

  9. Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y (2018) Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acid Res 46(9):4677–4688. https://doi.org/10.1093/nar/gky264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hassan MA, Yesmin N (2019) Review on CRISPR/Cas-9 gene editing technology and its potential clinical application. IOSR J Pharm 9(9):01–22

    Google Scholar 

  11. Mishra BS, Jamsheer KM, Singh D, Sharma M, Laxmi A (2017) Genome-wide identification and expression, protein-protein interaction and evolutionary analysis of the seed plant-specific BIG GRAIN and BIG GRAIN LIKE gene family. Front Plant Sci 8:1812. https://doi.org/10.3389/fpls.2017.01812

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM (2018) Alternative splicing of Os LG 3b controls grain length and yield in japonica rice. Plant Biotechnol J 16(9):1667–1678. https://doi.org/10.1111/pbi.12903

    Article  CAS  PubMed Central  Google Scholar 

  13. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017) CRISPR-P.2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532. https://doi.org/10.1016/j.molp.2017.01.0

    Article  CAS  PubMed  Google Scholar 

  14. Huang X (2016) From genetic mapping to molecular breeding: genomics have paved the highway. Mol Plant 9(7):959–960. https://doi.org/10.1016/j.molp.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  15. Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, Li J, Jin M, Xu Z, Gao Q (2019) OsSPL18 controls grain weight and grain number in rice. J Genet Genom 46(1):41–51. https://doi.org/10.1016/j.jgg.2019.01.003

    Article  Google Scholar 

  16. Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167(3):1087–1099. https://doi.org/10.1104/pp.114.256016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Estiati A (2019) Rice momilactones, potential allelochemical for weeds suppression. Asian J Agric 3(1):6–15. https://doi.org/10.13057/asianjagric/g03102

    Article  Google Scholar 

  18. Zhu Z, Yin J, Chern M, Zhu X, Yang C, He K, Liu Y, He M, Wang J, Song L (2020) New insights into bsr-d1-mediated broad-spectrum resistance to rice blast. Mol Plant Pathol 21(7):951–960. https://doi.org/10.1111/mpp.12941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong Y, Jin X, Tang Q, Zhang X, Yang J, Liu X, Cai J, Zhang X, Wang X, Wang Z (2017) Development and event-specific detection of transgenic glyphosate-resistant rice expressing the G2-EPSPS gene. Front Plant Sci 8:885. https://doi.org/10.3389/fpls.2017.00885

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mishra N, Tiwari PN, Sahu VK, Singh Y (2020) Genome editing in plants using crispr for crop improvement. Recent trends in molecular biology and biotechnology. Integrated Publications, New Delhi, pp 153–173

    Google Scholar 

  21. Amano T (2020) Gene regulatory landscape of the sonic hedgehog locus in embryonic development. Dev Growth Differ 62(5):334–342. https://doi.org/10.1111/dgd.12668

    Article  PubMed  Google Scholar 

  22. Shufen C, Yicong C, Baobing F, Guiai J, Zhonghua S, Ju L, Shaoqing T, Jianlong W, Peisong H, Xiangjin W (2019) Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci 26(2):77–87. https://doi.org/10.1016/j.rsci.2018.07.001

    Article  Google Scholar 

  23. Mondal S, Sofi NR, Ahmed ME, Halder T, Biswas PS (2019) Regulatory genes and enzymatic complex of flowering time in rice. Plant Breed Biotechnol 7(3):161–174. https://doi.org/10.9787/PBB.2019.7.3.161

    Article  Google Scholar 

  24. Zheng X, Yang S, Zhang D, Zhong Z, Tang X, Deng K, Zhou J, Qi Y, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554. https://doi.org/10.1007/s00299-016-1967-1

    Article  CAS  PubMed  Google Scholar 

  25. Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932. https://doi.org/10.3389/fpls.2017.01932

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598. https://doi.org/10.3389/fpls.2017.01598

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahmar S, Saeed S, Khan MHU, Ullah Khan S, Mora-Poblete F, Kamran M, Faheem A, Maqsood A, Rauf M, Saleem S (2020) A revolution toward gene-editing technology and its application to crop improvement. Int J Mol Sci 21(16):5665. https://doi.org/10.3390/ijms21165665

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39(3):1–10. https://doi.org/10.1007/s11032-019-0954-y

    Article  CAS  Google Scholar 

  29. Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Bio 90(1–2):49–62. https://doi.org/10.1007/s11103-015-0393-z

    Article  CAS  Google Scholar 

  30. Liu X, Wu D, Shan T, Xu S, Qin R, Li H, Negm M, Li J (2020) The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Plant Mol Biol 103:545–560. https://doi.org/10.1007/s11103-020-01010-1

    Article  CAS  PubMed  Google Scholar 

  31. Bo W, Zhaohui Z, Huanhuan Z, Xia W, Binglin L, Lijia Y, Xiangyan H, Deshui Y, Xuelian Z, Chunguo W (2019) Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci 26(2):98–108. https://doi.org/10.1016/j.rsci.2018.12.005

    Article  Google Scholar 

  32. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar VS, Verma RK, Yadav SK, Yadav P, Watts A, Rao M, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110. https://doi.org/10.1007/s12298-020-00819-w

    Article  CAS  Google Scholar 

  34. Li P, Chai Z, Lin P, Huang C, Huang G, Xu L, Deng Z, Zhang M, Zhang Y, Zhao X (2020) Genome-wide analysis of AP2/ERF transcription factors in sugarcane Saccharum spontaneum L. BMC Genom 21(1):1–17. https://doi.org/10.1186/s12864-020-07076-x

    Article  CAS  Google Scholar 

  35. Miyamoto T, Ochiai K, Nonoue Y, Matsubara K, Yano M, Matoh T (2015) Expression level of the sodium transporter gene OsHKT2; 1 determines sodium accumulation of rice cultivars under potassium-deficient conditions. Soil Sci Plant Nutr 61(3):481–492. https://doi.org/10.1080/00380768.2015.1005539

    Article  CAS  Google Scholar 

  36. Khatodia S, Bhatotia K, Passricha N, Khurana S, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506. https://doi.org/10.3389/fpls.2016.00506

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):1–5. https://doi.org/10.1038/nplants.2017.18

    Article  CAS  Google Scholar 

  38. Zhang F, Cheng D, Wang S, Zhu J (2020) Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region. Biotechnol Bioeng 117(9):2816–2826. https://doi.org/10.1002/bit.27441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naeem M, Majeed S, Hoque MZ, Ahmad I (2020) Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9(7):1608. https://doi.org/10.3390/cells9071608

    Article  CAS  PubMed Central  Google Scholar 

  40. Tang X, Gao F, Liu M, Fan Q, Chen D-K, Ma W-T (2019) Methods for enhancing CRISPR/Cas9-mediated homology-directed repair efficiency. Front Genet 10:551. https://doi.org/10.3389/fgene.2019.00551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding D, Chen K, Chen Y, Li H, Xie K (2018) Engineering introns to express RNA guides for Cas9-and Cpf1-mediated multiplex genome editing. Mol plant 11(4):542–552. https://doi.org/10.1016/j.molp.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Kim E, Koo T, Park SW, Kim D, Kim K, Cho H-Y, Song DW, Lee KJ, Jung MH, Kim S (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8(1):1–12. https://doi.org/10.1038/ncomms14500

    Article  CAS  Google Scholar 

  43. Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD (2018) NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol 19(1):1–25. https://doi.org/10.1186/s13059-018-1591-1

    Article  CAS  Google Scholar 

  44. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N, Jain N, Mishra V, Maniraj R, Krishnamurthy S (2019) Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Front Plant Sci 10:217. https://doi.org/10.3389/fpls.2019.00217

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li M, Guo L, Guo C, Wang L, Chen L (2016) Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol 59(1):62–73. https://doi.org/10.1007/s12374-016-0180-7

    Article  CAS  Google Scholar 

  47. Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29(9):977–986. https://doi.org/10.1007/s00299-010-0883-z

    Article  CAS  PubMed  Google Scholar 

  48. Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105. https://doi.org/10.1016/j.envexpbot.2010.01.009

    Article  CAS  Google Scholar 

  49. Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993. https://doi.org/10.3389/fpls.2017.00993

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428. https://doi.org/10.1104/pp.107.101295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant physiol 143(4):1739–1751. https://doi.org/10.1104/pp.106.094532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945–959. https://doi.org/10.1104/pp.114.246520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61(10):2807–2818. https://doi.org/10.1093/jxb/erq120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8(1):1–13. https://doi.org/10.1186/1471-2229-8-49

    Article  CAS  Google Scholar 

  55. Ahmad I, Mian A, Maathuis FJ (2016) Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot 67(9):2689–2698. https://doi.org/10.1093/jxb/erw103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38(12):2766–2779. https://doi.org/10.1111/pce.12586

    Article  CAS  PubMed  Google Scholar 

  57. Liao YD, Lin KH, Chen CC, Chiang CM (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breed 36(3):22. https://doi.org/10.1007/s11032-016-0446-2

    Article  CAS  Google Scholar 

  58. Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40(1):326–345. https://doi.org/10.1590/1678-4685-gmb-2016-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang C, Yang Y, Wang H, Ran X, Li B, Zhang J, Zhang H (2016) Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice. Plant Biotechnol J 14(9):1838–1851. https://doi.org/10.1111/pbi.12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) O s SUV 3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR 64). Plant J 76(1):115–127. https://doi.org/10.1111/tpj.12277

    Article  PubMed  Google Scholar 

  61. Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82(4–5):439–455. https://doi.org/10.1007/s11103-013-0073-9

    Article  CAS  PubMed  Google Scholar 

  62. Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165(2):688–704. https://doi.org/10.1104/pp.113.230268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin MJ (2018) P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact 13(1):461–471. https://doi.org/10.1080/17429145.2018.1506516

    Article  CAS  Google Scholar 

  64. Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6(11):1746–1751. https://doi.org/10.4161/psb.6.11.17801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144. https://doi.org/10.1016/j.rsci.2016.09.004

    Article  Google Scholar 

  66. Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279(27):28539–28552. https://doi.org/10.1074/jbc.M310138200

    Article  CAS  PubMed  Google Scholar 

  67. Afzal Z, Howton T, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4(1):9. https://doi.org/10.3390/jdb4010009

    Article  CAS  PubMed Central  Google Scholar 

  68. Kumar K, Mosa KA, Meselhy AG, Dhankher OP (2018) Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Indian J Plant Physiol 23(4):721–730. https://doi.org/10.1007/s40502-018-0425-1

    Article  CAS  Google Scholar 

  69. Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379. https://doi.org/10.1104/pp.109.137554

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Tian L-H, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149(2):916–928. https://doi.org/10.1104/pp.108.131144

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602. https://doi.org/10.1007/s11103-008-9340-6

    Article  CAS  PubMed  Google Scholar 

  72. Kumar K, Kumar M, Kim S-R, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6(1):1–15. https://doi.org/10.1186/1939-8433-6-27

    Article  Google Scholar 

  73. Singla-Pareek SL, Yadav SK, Pareek A, Reddy M, Sopory S (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17(2):171–180. https://doi.org/10.1007/s11248-007-9082-2

    Article  CAS  PubMed  Google Scholar 

  74. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8(10):1455–1465. https://doi.org/10.1016/j.molp.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  75. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144(4):1978–1985. https://doi.org/10.1104/pp.107.101154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759. https://doi.org/10.1105/tpc.008714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bostock RM, Quatrano RS (1992) Regulation of Em gene expression in rice: interaction between osmotic stress and abscisic acid. Plant Physiol 98(4):1356–1363. https://doi.org/10.1104/pp.98.4.1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu Q, Umeda M, Uchimiya H (1994) Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Mol Biol 26(6):2003–2007. https://doi.org/10.1007/BF00019511

    Article  CAS  PubMed  Google Scholar 

  79. Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga EJB, de Magalhaes Júnior AM, Maia MAC, da Silva PL (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plant 23(4):865–875. https://doi.org/10.1007/s12298-017-0467-2

    Article  CAS  Google Scholar 

  80. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992. https://doi.org/10.1073/pnas.0604882103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng Y, Long M (2007) A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol Lett 29(7):1129–1134. https://doi.org/10.1007/s10529-007-9347-0

    Article  CAS  PubMed  Google Scholar 

  82. Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582(7):1037–1043. https://doi.org/10.1016/j.febslet.2008.02.052

    Article  CAS  PubMed  Google Scholar 

  83. Xu GY, Rocha PS, Wang ML, Xu M-L, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59. https://doi.org/10.1007/s00425-011-1386-z

    Article  CAS  PubMed  Google Scholar 

  84. Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011) Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tissue Organ C 107(1):1–11. https://doi.org/10.1007/s11240-011-9950-6

    Article  CAS  Google Scholar 

  85. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  86. Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An G, Paek NC (2015) Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol 56(12):2325–2339. https://doi.org/10.1093/pcp/pcv144

    Article  CAS  PubMed  Google Scholar 

  87. Cao Y, Wu Y, Zheng Z, Song F (2005) Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol 67(3–5):202–211. https://doi.org/10.1016/j.pmpp.2006.01.004

    Article  CAS  Google Scholar 

  88. Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7(4):502–509. https://doi.org/10.4161/psb.19646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kurotani K, Yamanaka K, Toda Y, Ogawa D, Tanaka M, Kozawa H, Nakamura H, Hakata M, Ichikawa H, Hattori T (2015) Stress tolerance profiling of a collection of extant salt-tolerant rice varieties and transgenic plants overexpressing abiotic stress tolerance genes. Plant Cell Physiol 56(10):1867–1876. https://doi.org/10.1093/pcp/pcv106

    Article  CAS  PubMed  Google Scholar 

  90. Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75(1–2):179–191. https://doi.org/10.1007/s11103-010-9717-1

    Article  CAS  PubMed  Google Scholar 

  91. Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11(1):1–15. https://doi.org/10.1186/1471-2229-11-34

    Article  CAS  Google Scholar 

  92. Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795. https://doi.org/10.1007/s11248-011-9568-9

    Article  CAS  PubMed  Google Scholar 

  93. Saeng-ngam S, Takpirom W, Buaboocha T, Chadchawan S (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55(3):198–208. https://doi.org/10.1007/s12374-011-0154-8

    Article  CAS  Google Scholar 

  94. Świat MA, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran J-M, Daran-Lapujade P (2017) Fn Cpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45(21):12585–12598. https://doi.org/10.1093/nar/gkx1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63(2):695–709. https://doi.org/10.1093/jxb/err313

    Article  CAS  PubMed  Google Scholar 

  96. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817. https://doi.org/10.1101/gad.1812409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This review article received no funds.

Author information

Authors and Affiliations

Authors

Contributions

IK performed the literature search and wrote draft manuscript, SK and YZ had the idea for the article and prepared the artwork, JZ drafted the final manuscript, MA and SAJ critically revised the work.

Corresponding authors

Correspondence to Sikandar Khan or Yong Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no financial or competing interests.

Ethical approval

Ethical approval was not required because no such experiments/cell lines were used.

Informed consent

Informed consent was not applicable, because no experimental subjects were used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 351 KB)

Supplementary file2 (PDF 162 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khan, S., Zhang, Y. et al. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 48, 3605–3615 (2021). https://doi.org/10.1007/s11033-021-06375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06375-0

Keywords

Navigation