Skip to main content

CRISPR/Cas-Mediated Genome Editing Technologies in Plants for Stress Resilience

  • Chapter
  • First Online:
Antioxidant Defense in Plants

Abstract

Climate change can affect agriculture through various abiotic (temperature: low/high, salinity, heavy metals, water submergence, and water deficiency) and biotic (bacterial, viral, fungal) stress factors. Climate change leads to above 50% of worldwide losses in the yield of major crops per year. Nutrition demand is going to nearly double by the 2050. Recent genome editing approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is a leading, powerful, versatile, ground-breaking, and smart plant genome editing tool with greater efficiency for designing of stress resilient crops. CRISPR/Cas can cause activation and interference of genes related to stress regulatory networks for advanced tolerance to stress scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genom 19(1):26–39

    Article  CAS  Google Scholar 

  • Ahmad S, Shahzad R, Jamil S, Tabassum J, Chaudhary MAM, Atif RM, Iqbal MM, Monsur MB, Lv Y, Sheng Z (2021) Regulatory aspects, risk assessment, and toxicity associated with RNAi and CRISPR methods. In: CRISPR and RNAi systems. Elsevier, pp 687–721

    Chapter  Google Scholar 

  • Alfatih A, Wu J, Jan SU, Zhang Z-S, Xia JQ, Xiang CB (2020) Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ 43:2743–2754

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. https://doi.org/10.1186/s13059-015-0799-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM (2020) Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biol 3:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ et al (2018a) RNA VIRUS INTERFERENCE VIA CRISPR/Cas13a system in plants. Genome Biol 19:1. https://doi.org/10.1186/s13059-017-1381-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R et al (2018b) Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses 10(12):732

    Article  CAS  PubMed Central  Google Scholar 

  • Arndell T, Sharma N, Langridge P, Baumann U, Watson-Haigh NS, Whitford R (2019) gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol 19(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22(1):396

    Article  CAS  PubMed Central  Google Scholar 

  • Bastet A et al (2019) Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnol J 17(9):1736–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11(3):272

    Article  CAS  PubMed Central  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Gemini virus mediated genome editing in potato (Solanum tuberosum L.) using sequence specific nucleases. Front Plant Sci 7:1045. https://doi.org/10.3389/fpls.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J 18(12):2370–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale J et al (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8(1):1496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danilo B, Perrot L, Mara K, Botton E, Nogué F, Mazier M (2019) Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato. Plant Cell Rep 38(4):459–462

    Article  CAS  PubMed  Google Scholar 

  • Dar MH, Zaidi NW, Waza SA, Verulkar SB, Ahmed T, Singh PK, Roy SKB, Chaudhary B, Yadav R, Islam MM, Iftekharuddaula KM, Roy JK, Kathiresan RM, Singh BN, Singh US, Ismail AM (2018) No yield penalty under favorable conditions paving the way for successful adoption of flood tolerant rice. Sci Rep 8:9245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv 2016:064824

    Google Scholar 

  • Faal PG, Farsi M, Seifi A, Kakhki AM (2020) Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol Biol Rep 47(5):3369–3376

    Article  CAS  Google Scholar 

  • Fernandez-Cornejo J, Wechsler S, Livingston M, Mitchell L (2014) Genetically engineered crops in the United States. USDA-ERS Economic Research Report Number 162, Available at SSRN: https://ssrn.com/abstract=2503388 or https://doi.org/10.2139/ssrn.2503388

  • Foster AJ, Martin-Urdiroz M, Yan X, Wright HS, Soanes DM, Talbot NJ (2018) CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counter selection in the rice blast fungus. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  • Ganie SA, Wani SH, Henry R, Hensel G (2021) Improving rice salt tolerance by precision breeding in a new era. Curr Opin Plant Biol 60:101996

    Article  CAS  PubMed  Google Scholar 

  • Gomez MA et al (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17(2):421–434

    Article  CAS  PubMed  Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S et al (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6(4):54

    Article  CAS  Google Scholar 

  • Huang X, Zeng X, Li J, Zhao D (2017) Construction and analysis of tify1a and tify1b mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. J Agric Biotech 25(6):1003–1012

    Google Scholar 

  • Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci 9:162. https://doi.org/10.3389/fpls.2018.00162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyun TK (2020) CRISPR/Cas-based genome editing to improve abiotic stress tolerance in plants. Front Plant Sci 44(2):121–127. https://doi.org/10.2298/BOTSERB2002121H

    Article  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144. https://doi.org/10.1038/nplants.2015.144

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823. https://doi.org/10.1111/pbi.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YY, Chai YP, Lu MH, Han XL, Lin Q, Zhang Y, Zhang Q, Zhou Y, Wang XC, Gao C (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol 21(1):1–10

    Article  CAS  Google Scholar 

  • Khan H, McDonald MC, Williams SJ, Solomon PS (2020) Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biol Biotechnol 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitomi Y, Hanzawa E, Kuya N, Inoue H, Hara N, Kawai S, Kanno N, Endo M, Sugimoto K, Yamazaki T (2020) Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci U S A 117(35):21242–21250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S et al (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15(5):634–647

    Article  CAS  PubMed  Google Scholar 

  • Koseoglou E (2017) The study of SlPMR4 CRISPR/Cas9-mediated tomato allelic series for resistance against powdery mildew. Master thesis, Wageningen University and Research, Wageningen

    Google Scholar 

  • Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, Zhou X, Zhou H (2020) Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant 13(4):565–572

    Article  CAS  PubMed  Google Scholar 

  • Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X et al (2019) OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). Genes, Genomes. Genetics (Bethesda) 9:4107–4114

    Article  CAS  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Zhang H, Si X, Tian Y, Chen K, Liu J et al (2017) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics 44(9):465–468

    Article  PubMed  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    Article  CAS  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W et al (2019a) CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y (2019b) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61(12):1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L (2019c) Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 37(4):445–450

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li W, Zhou Z, Chen H, Xie C, Lin Y (2020a) A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol J 18(2):313

    Article  PubMed  Google Scholar 

  • Li Y, Zhu J, Wu H, Liu C, Huang C, Lan J, Zhao Y, Xie C (2020b) Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop J. 8(3):449–456

    Article  Google Scholar 

  • Liang Y, Han Y, Wang C, Jiang C, Xu JR (2018) Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front Plant Sci 9:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Nawaz G, Zhao N, Liu Y, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy 9(11):728

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63(10):3899–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu D, Shan T, Xu S, Qin R, Li H et al (2020) The trihelix transcription factor OsGTg-2 is involved adaption to salt stress in rice. Plant Mol Biol 103:545–560

    Article  CAS  PubMed  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahas A, Aman R, Mahfouz M (2019) CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol 20(1):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7(1904):1904

    PubMed  PubMed Central  Google Scholar 

  • Mehta D et al (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol 20(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo W, Tang W, Du Y, Jing Y, Bu Q, Lin R (2020) PHYTOCHROMEINTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress. Plant Physiol 184:506–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz G, Usman B, Peng H, Zhao N, Yuan R, Liu Y, Li R (2020) Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes 11(7):735

    Article  CAS  PubMed Central  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):1–6. https://doi.org/10.1038/s41598-017-00578-x

    Article  CAS  Google Scholar 

  • Nuccio ML, Claeys H, Heyndrickx KS (2021) CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. Mol Breed 41:11

    Article  Google Scholar 

  • Oerke EC (1994) Estimated crop losses due to pathogens, animal pests, and weeds. In: Crop production and crop protection. Elsevier Science Publishing, New York, pp 535–597

    Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom J-S, Li C, Nguyen H, Liu B et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotechnol J 17(3):665–673

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandita D (2019) Plant MIRnome: miRNA biogenesis and abiotic stress response. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_18

    Chapter  Google Scholar 

  • Pandita D (2020a) Nano-enabled agriculture can sustain “Farm to Fork” chain. In: Hakeem KR, Pirzadah TB (eds) Nanobiotechnology in agriculture, nanotechnology in the life sciences. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-39978-8_3

    Chapter  Google Scholar 

  • Pandita D (2020b) Saffron (Crocus sativus L.): it’s phytochemistry, therapeutic significance and omics-based biology. In: Aftab T, Hakeem KR (eds) Medicinal and aromatic plants: expanding their horizons through omics. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819590-1.00014-8

    Chapter  Google Scholar 

  • Pandita D (2021a) CRISPR/Cas mediated genome editing for improved stress tolerance in plants. In: Aftab T, Hakeem KR (eds) Frontiers in plant–soil interaction: molecular insights into plant adaptation. Academic Press, Elsevier, pp 259–291. https://doi.org/10.1016/B978-0-323-90943-3.00001-8

    Chapter  Google Scholar 

  • Pandita D (2021b) CRISPR/Cas mediated genome editing technologies in plants. In: Aftab T, Hakeem KR (eds) Plant abiotic stress physiology, volume 1: responses and adaptations. Hard

    Google Scholar 

  • Pandita D (2021c) Cas9 technology: an innovative approach to enhance phytoremediation. In: Pirzadah TB, Malik B, Hakeem KR (eds) Plant-microbe dynamics: recent advances for sustainable agriculture. CRC Press

    Google Scholar 

  • Pandita A, Pandita D (2020) In: Nayik GA, Gull A (eds) Lotus (Nelumbo nucifera Gaertn). Antioxidants in vegetables and nuts—properties and health benefits, Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_2

    Chapter  Google Scholar 

  • Pandita D, Pandita A (2021) Secondary metabolites in medicinal and aromatic plants (MAPs): potent molecules in nature’s arsenal to fight human diseases. In: Aftab T, Hakeem KR (eds) Medicinal and aromatic plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_214

    Chapter  Google Scholar 

  • Pandita D, Wani SH (2019) MicroRNA as a tool for mitigating abiotic stress in rice (Oryza sativa L.). In: Wani S (ed) Recent approaches in omics for plant resilience to climate change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_6

    Chapter  Google Scholar 

  • Pandita D, Pandita A, Pamuru RR, Nayik GA (2020) Beetroot. In: Nayik GA, Gull A (eds) Antioxidants in vegetables and nuts—properties and health benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_3

    Chapter  Google Scholar 

  • Pandita D, Puli COR, Palakolanu SR (2021) CRISPR/Cas13: a novel and emerging tool for RNA editing in plants. In: Tang G, Teotia S, Tang X, Singh D (eds) RNA-based technologies for functional genomics in plants. Concepts and strategies in plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_14

    Chapter  Google Scholar 

  • Park JJ, Dempewolf E, Zhang W, Wang ZY (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS One 12:e0179410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng A, Shanchun C, Tiangang L, Lanzhen X, Yongrui H, Liu W et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CSLOB1 promoter in citrus. Plant Biotechnol J 15(12):1509–1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790

    Article  CAS  PubMed  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17(8):1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y et al (2019) Rice OsDOF15 contributes to ethylene inhibited primary root elongation under salt stress. New Phytol 223:798–813

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Kang S, He L, Zhao J, Zhang S, Hu J et al (2018) The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci 267:168–179

    Article  CAS  PubMed  Google Scholar 

  • Raman R (2017) The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food 8:195–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Roca-Paixão JF, Gillet FX, Ribeiro TP, Bournaud C, Lourenco Tessutti T, Noriega DD et al (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyl transferase. Sci Rep 9:8080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero FM, Gatica-Arias A (2019) CRISPR/Cas9: development and application in rice breeding. Rice Sci 26:265–281

    Article  Google Scholar 

  • Roy A et al (2019) Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS One 14(10):e0223765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santosh Kumar V, Verma RK, Yadav SK, Yadav P, Watts A, Rao M, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer NJ, Jerry M, Miller RB, Warburg ZJ, Walker KA, Beetham PR et al (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J 14(2):496–502. https://doi.org/10.1111/pbi.12496

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knockout of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H et al (2017) Targeted base editing in rice and tomato using a CRISPRCas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X (2020) CRISPR/Cas9-mediated SlMYC2 mutagenesis adverse to tomato plant growth and MeJA-induced fruit resistance to Botrytis cinerea. J Agric Food Chem 68(20):5529–5538

    Article  CAS  PubMed  Google Scholar 

  • Somssich M (2019) A short history of plant transformation. Peer J. https://doi.org/10.7287/peerj.preprints.27556v2

  • Songmei L, Jie J, Yang L, Jun M, Shouling X, Yuanyuan T, Youfa L, Qingyao S, Jianzhong H (2019) Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Sci 26(2):88–97

    Article  Google Scholar 

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y (2018) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. Int J Mol Sci 19(9):2716

    Article  PubMed Central  CAS  Google Scholar 

  • Sun BR, Fu CY, Fan ZL, Chen Y, Chen WF, Zhang J et al (2019) Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu. Rice 12(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13(10):e1525996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor JE, Hatcher PE, Paul ND (2004) Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J Exp Bot 55:159–168. https://doi.org/10.1093/jxb/erh053

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi JN et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2(46)

    Google Scholar 

  • Verma AK, Deepti S (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res 4:345–346

    Google Scholar 

  • Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206(1):57–73

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34(9):1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J et al (2017a) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2017b) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16(4, 844):–55

    Google Scholar 

  • Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS et al (2018a) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19(9):2580

    Article  PubMed Central  CAS  Google Scholar 

  • Wang T, Deng Z, Zhang X, Wang H, Wang Y, Liu X, Liu S, Xu F, Li T, Fu D (2018b) Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Hortic Res 5(1):1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Hardcastle TJ, Pastor AC, Yip WH, Tang S, Baulcombe DC (2018c) A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev 32(17–18):1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Xu Y, Li W, Chen Z, Wang J, Fan F, Tao Y, Jiang Y, Zhu QH, Yang J (2020) Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. Crop J

    Google Scholar 

  • Wang F, Xu Y, Li W, Chen Z, Wang J, Fan F, Tao Y, Jiang Y, Zhu Q-H, Yang J (2021) Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. Crop J 9:305–312

    Article  Google Scholar 

  • Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L et al (2020a) Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10. ABF2. Frontiers in. Plant Sci 11:577

    Google Scholar 

  • Wu J, Chen C, Xian G, Liu D, Lin L, Yin S, Sun Q, Fang Y, Zhang H, Wang Y (2020b) Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol J 18(9):1857–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Zhang Y, Huang CF (2019) Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J Integr Agric 18(3):688–697

    Article  CAS  Google Scholar 

  • Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X et al (2018) BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol 59(11):2239–2254

    CAS  PubMed  Google Scholar 

  • Yin K et al (2019) Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res 1:9

    Article  Google Scholar 

  • Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X et al (2020) ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell 32(7):2292–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon YJ, Venkatesh J, Lee JH, Kim J, Lee HE, Kim DS, Kang BC (2020) Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci 11:1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, Shen L (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 19(1):1–13

    Article  Google Scholar 

  • Yue E, Cao H, Liu B (2020) OsmiR535, a Potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plan Theory 9:1337

    CAS  Google Scholar 

  • Zafar SA, Zaidi SSEA, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A, Foyer C (2020a) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71:470–479. https://doi.org/10.1093/jxb/erz476

    Article  CAS  PubMed  Google Scholar 

  • Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S, Arif M, Ejaz K, Mansoor S (2020b) Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Front Plant Sci 11:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Zehra A et al (2020) Kiwi. In: Nayik GA, Gull A (eds) Antioxidants in fruits: properties and health benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7285-2_28

    Chapter  Google Scholar 

  • Zeng X, Luo Y, Vu NTQ, Shen S, Xia K, Zhang M (2020a) CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol 20(1):1–11

    Article  CAS  Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020b) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Gao C (2020) Generating herbicide tolerance in rice by base editing. Sci China Life Sci

    Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91(4):714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39(3):1–10

    Article  CAS  Google Scholar 

  • Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D (2020a) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J 18(6):1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li J, Chen S, Ma X, Wei H, Chen C, Gao N, Zou Y, Kong D, Li T (2020b) An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Gen Genomics 295(4):941–956

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G et al (2016) An alternative strategy for targeted gene replacement in plants using a dualsgRNA/Cas9 design. Sci Rep 6:23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandita, D. (2022). CRISPR/Cas-Mediated Genome Editing Technologies in Plants for Stress Resilience. In: Aftab, T., Hakeem, K.R. (eds) Antioxidant Defense in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7981-0_13

Download citation

Publish with us

Policies and ethics