Skip to main content
Log in

Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RE, Lo TW, Thornalley PJ (1993) A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies. J Protein Chem 12:111–119

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bito A, Haider M, Hadler I, Breitenbach M (1997) Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J Biol Chem 272:21509–21519

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cordell PA, Futers TS, Grants PJ, Pease RJ (2004) The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II. J Biol Chem 279:28653–28661

    Article  PubMed  CAS  Google Scholar 

  • Deswal R, Sopory SK (1991) Purification and partial characterization of glyoxalase I from a higher plant, B. juncea. FEBS Lett 282:277–280

    Article  PubMed  CAS  Google Scholar 

  • Deswal R, Chakravarty TN, Sopory SK (1993) The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans 21:527–530

    PubMed  CAS  Google Scholar 

  • Epstein E (1998) How calcium enhances plant salt tolerance. Science 280:1906–1907

    Article  PubMed  CAS  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase I from a higher plant: upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Kimura A (1996) Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem 271:25958–25965

    Article  PubMed  CAS  Google Scholar 

  • Irsch T, Krauth-Siegel RL (2004) Glyoxalase II of African trypanosomes is trypanothione-dependent. J Biol Chem 279:22209–22217

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Choudhary D, Kale RK, Bhalla-Sarin N (2002) Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant 114:499–505

    Article  PubMed  CAS  Google Scholar 

  • Johansen KS, Svendsen II, Rasmussen SK (2000) Purification and cloning of the two domain glyoxalase I from wheat bran. Plant Sci 155:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kalapos MP, Garzo T, Antonie F, Mandl J (1992) Accumulation of S-D-lactoylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes. Biochim Biophys Acta 1135:159–164

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Umezawa Y, Ohmura S, Kato S (1993) Human glyoxalase I: cDNA cloning, expression and sequence similarity to glyoxalase I from Pseudomonas putida. J Biol Chem 268:11217–11221

    PubMed  CAS  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Singla-Pareek SL, Reddy MK, Sopory SK (2003) Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J Plant Biol 30:179–187

    Google Scholar 

  • Maiti MK, Krishnasamy S, Owen HA, Makaroff CA (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Mol Biol 35:471–481

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Expt Bot 49:1102–1116

    Article  Google Scholar 

  • McLellan AC, Phillips SA, Thornalley PJ (1993) The assay of S-D-lactoylglutathione in biological systems. Anal Biochem 211:37–43

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Expt Bot 49:623–647

    Article  CAS  Google Scholar 

  • Norton SJ, Talesa V, Yuan WJ, Principato GB (1990) Glyoxalase I and glyoxalase II from Aloe vera: purification, characterization and comparison with animal glyoxalases. Biochem Int 22:411–418

    Article  PubMed  CAS  Google Scholar 

  • Papoulis A, Al-Abed Y, Bucala R (1995) Identification of N2-(1-carboxylethyl) guanine (CEG) as a guanine advanced glycosylation endproduct. Biochemistry 34:648–655

    Article  PubMed  CAS  Google Scholar 

  • Paulus C, Knollner B, Jacobson H (1993) Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta 189:561–566

    Article  PubMed  CAS  Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy O, Guha-Mukherjee S, Sopory SK (1983) Presence of glyoxalase I in pea. Biochem Inter 7:307–318

    CAS  Google Scholar 

  • Ridderstrom M, Mannervik B (1996) Optimized heterologous expression of the human zinc enzyme glyoxalase I. Biochem J 314:463–467

    PubMed  Google Scholar 

  • Ridderstrom M, Mannervik B (1997) Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana. Biochem J 322:449–454

    PubMed  Google Scholar 

  • Ridderstrom M, Saccucci F, Hellman U, Bergman T, Principato G, Mannervik B (1996) Molecular cloning, heterologous expression and characterization of human glyoxalase II. J Biol Chem 271:319–323

    Article  PubMed  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  PubMed  CAS  Google Scholar 

  • Saxena M, Bisht R, Roy SD, Sopory SK, Bhalla-Sarin N (2005) Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun 336:813–819

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc spiked soils. Plant Physiol 140:613–623

    Article  PubMed  CAS  Google Scholar 

  • Skipsey M, Andrews CJ, Townson JK, Jepson I, Edwards R (2000) Cloning and characterization of glyoxalase I from Soybean. Arch Biochem Biophys 374:261–268

    Article  PubMed  CAS  Google Scholar 

  • Talesa V, Rosi G, Contenti S, Mangiabene C, Lupattelli M, Norton SJ, Giovannini E, Principato GB (1990) Presence of glyoxalase II in mitochondria from spinach leaves: comparison with the enzyme from cytosol. Biochem Inter 22:1115–1120

    CAS  Google Scholar 

  • Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Asp Med 14:287–371

    Article  CAS  Google Scholar 

  • Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27:565–573

    PubMed  CAS  Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Methylglyoxal detoxification by glyoxalase system: A survival strategy during environmental stresses. Physiol Mol Biol Plants 11:1–11

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005c) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Kumar M, Pareek A, Saxena M, Sarin NB, Sopory SK (2007) Characterization and functional validation of glyoxalase II from rice. Protein Expr Purif 51:126–132

    Article  PubMed  CAS  Google Scholar 

  • Zivy M, Thiellement H, de Vienne D, Hofmann JP (1983) Study on nuclear and cytoplasmic genome expression in wheat by two-dimensional gel electrophoresis. Theor Appl Genet 66:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Ray Wu, Cornell University, USA for valuable suggestions and critical reading of the manuscript. Thanks are also due to Drs. F White and BW Porter, Kansas State University, USA for the initial glyoxalase II clone and Drs. V. Rajamani and J. K. Tripathi, JNU, New Delhi for extending help in the work related to ionic content measurements. The financial support by the Department of Biotechnology (DBT, New Delhi) Rice Network Project, DBT Post-Doc fellowship to SKY and grants from the International Centre for Genetic Engineering and Biotechnology is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh L. Singla-Pareek.

Additional information

Sneh L. Singla-Pareek and Sudesh Kumar Yadav have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla-Pareek, S.L., Yadav, S.K., Pareek, A. et al. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17, 171–180 (2008). https://doi.org/10.1007/s11248-007-9082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9082-2

Keywords

Navigation