Skip to main content
Log in

Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved glycolytic enzyme that plays an important role in carbon economy. However, recent analyses of GAPDH demonstrate that GAPDH is a multifunctional protein that has roles in various cellular functions. In this study, three putative cytosolic GAPDH protein sequences (OsGAPC1–3) were identified from the rice (Oryza sativa) genome. The OsGAPC family has similar exon–intron structures. OsGAPCs transcripts were highly present in seedling shoots and roots, booting leaves, and flowers, but are at low levels in booting culms. Three OsGAPC genes are responsive to all the abiotic stresses including osmotic (20% PEG 6000), salt (200 mM NaCl), heat (42°C), abscisic acid (50 μM) and methyl viologen (50 μM) treatments. Transient expression of GFP-OsGAPC3 fusion protein in onion epidermal cells revealed that OsGAPC3 was indeed a cytosolic protein. One of the representative OsGAPC genes, OsGAPC3, which was induced most significantly by salt stress, was over-expressed in japonica rice Zhonghua 11 under the control of a ubiquitin promoter. Transgenic rice plants overexpressing OsGAPC3 showed enhanced tolerance to salt stress. Furthermore, we found that OsGAPC3 could alleviate the salt toxicity through the regulation of hydrogen peroxide (H2O2) levels. Taken together, these results indicate that OsGAPC3 plays important roles in salt stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

H2O2 :

Hydrogen peroxide

MS:

Murashige and Skoog medium

MV:

Methyl viologen

PEG:

Polyethylene glycol

RT–PCR:

Reverse transcription-polymerase chain reaction

ROS:

Reactive oxygen species

WT:

Wild-type

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol 32:1285–1289

    CAS  Google Scholar 

  • Anderson LE, Ringenberg MR, Carol AA (2004) Cytosolic glyceraldehyde-3-P dehydrogenase and the B subunit of the chloroplast enzyme are present in the pea leaf nucleus. Protoplasma 223(1):33–43. doi:10.1007/s00709-003-0030-6

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Jin Y, Jeong JC, Lee HJ, Moon H, Lee J, Shin D, Kang CH, Kim DH, Nam J, Lee SY, Yun DJ (2008) Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69(2):333–338. doi:10.1016/j.phytochem.2007.07.027

    Article  PubMed  CAS  Google Scholar 

  • Cerff R, Chambers SE (1979) Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and EC 1.2.1.13). J Biol Chem 254(13):6094–6098

    PubMed  CAS  Google Scholar 

  • Chatzissavvidis C, Veneti G, Papadakis I, Therios I (2008) Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tiss Organ Cult 95:37–45. doi:10.1007/s11240-008-9411-z

    Article  CAS  Google Scholar 

  • Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129(5):983–997. doi:10.1016/j.cell.2007.03.045

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97(7):3718–3723

    Article  PubMed  CAS  Google Scholar 

  • de Klerk GJ, Pumisutapon P (2008) Protection of in vitro grown Arabidopsis seedlings against abiotic stresses. Plant Cell Tiss Organ Cult 95:149–154. doi:10.1007/s11240-008-9426-5

    Article  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53(372):1255–1272

    Article  PubMed  CAS  Google Scholar 

  • Dewdney J, Conley TR, Shih MC, Goodman HM (1993) Effects of blue and red light on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana. Plant Physiol 103(4):1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984. doi:10.1110/ps.8.5.978

    Article  PubMed  CAS  Google Scholar 

  • Fermani S, Sparla F, Falini G, Martelli PL, Casadio R, Pupillo P, Ripamonti A, Trost P (2007) Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 104(26):11109–11114. doi:10.1073/pnas.0611636104

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29(8):1023–1026

    PubMed  CAS  Google Scholar 

  • Hajirezaei MR, Biemelt S, Peisker M, Lytovchenko A, Fernie AR, Sonnewald U (2006) The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism. J Exp Bot 57(10):2363–2377. doi:10.1093/jxb/erj207

    Article  PubMed  CAS  Google Scholar 

  • Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43(9):828–835. doi:10.1016/j.plaphy.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Huai JL, Zheng J, Wang GY (2009) Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Plant Cell Tiss Organ Cult 99:117–124. doi:10.1007/s11240-009-9582-2

    Article  CAS  Google Scholar 

  • Iwamoto M, Higo H, Higo K (2000) Differential diurnal expression of rice catalase genes; the 5’ flanking region of CatA is not sufficient for circadian control. Plant Sci 151:39–46

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651. doi:10.1016/j.bbrc.2006.04.140

    Article  PubMed  CAS  Google Scholar 

  • Jeong MJ, Park SC, Kwon HB, Byun MO (2000) Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 278(1):192–196. doi:10.1006/bbrc.2000.3732

    Article  PubMed  CAS  Google Scholar 

  • Jeong MJ, Park SC, Byun MO (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol Cells 12(2):185–189

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30(3):142–150. doi:10.1016/j.tibs.2005.01.005

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski LA (1993) Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:339–367

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinf 9(4):299–306. doi:10.1093/bib/bbn017

    Article  CAS  Google Scholar 

  • Li YH, Zhang YZ, Feng FJ, Dong L, Cheng LL, Ma FW, Shi SG (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult 102:337–345. doi:10.1007/s11240-010-9738-0

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 104:41–49. doi:10.1007/s11240-010-9802-9

    Article  CAS  Google Scholar 

  • Manjunath S, Sachs MM (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol Biol 33(1):97–112

    Article  PubMed  CAS  Google Scholar 

  • Marri L, Sparla F, Pupillo P, Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56(409):73–80. doi:10.1093/jxb/eri020

    PubMed  CAS  Google Scholar 

  • Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159(2):323–331

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 88(19):8460–8464

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97(3):1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Perusse JR, Schoen DJ (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J Mol Evol 59(4):427–436. doi:10.1007/s00239-004-2623-x

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. J Mol Evol 57(1):16–26. doi:10.1007/s00239-002-2441-y

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214. doi:10.1146/annurev.arplant.47.1.185

    Article  PubMed  CAS  Google Scholar 

  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148(3):1655–1667. doi:10.1104/pp.108.128769

    Article  PubMed  CAS  Google Scholar 

  • Russell DA, Sachs MM (1989) Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1(8):793–803. doi:10.1105/tpc.1.8.7931/8/793

    Article  PubMed  CAS  Google Scholar 

  • Russell DA, Wong DM, Sachs MM (1990) The anaerobic response of soybean. Plant Physiol 92(2):401–407

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27(9):483–486

    Article  PubMed  CAS  Google Scholar 

  • Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432(2):159–184

    Article  PubMed  CAS  Google Scholar 

  • Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95(1):45–52. doi:10.1002/jcb.20399

    Article  PubMed  CAS  Google Scholar 

  • Smith TL, Leong SA (1990) Isolation and characterization of a Ustilago maydis glyceraldehyde-3-phosphate dehydrogenase-encoding gene. Gene 93(1):111–117

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tiss Organ Cult 103:205–215. doi:10.1007/s11240-010-9768-7

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols Bioinformatics Chapter 2: Unit 2 3. doi:10.1002/0471250953.bi0203s00

  • Velasco R, Salamini F, Bartels D (1994) Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol Biol 26(1):541–546

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16(16):4806–4816. doi:10.1093/emboj/16.16.4806

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Tang T, Zhou R, Shi S (2007) PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene. J Biochem Mol Biol 40(2):172–179

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kwon HB, Peng HP, Shih MC (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101(1):209–216

    Article  PubMed  CAS  Google Scholar 

  • Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Organ Cult 100:21–29. doi:10.1007/s11240-009-9612-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant # 30821064), Major State Basic Research Program (2007CB108701) and National Transgenic Research Project (2009zx08009-018B) to YT Lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Tang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Supplementary material 2 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XH., Rao, XL., Shi, HT. et al. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tiss Organ Cult 107, 1–11 (2011). https://doi.org/10.1007/s11240-011-9950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9950-6

Keywords

Navigation