Skip to main content
Log in

Expanding the repertoire of microsatellite markers for polymorphism studies in Indian accessions of mung bean (Vigna radiata L. Wilczek)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Limited availability of validated, polymorphic microsatellite markers in mung bean (Vigna radiata), an important food legume of India, has been a major hurdle towards its improvement and higher yield. The present study was undertaken in order to develop a new set of microsatellite markers and utilize them for the analysis of genetic diversity within mung bean accessions from India. A GA/CT enriched library was constructed from V. radiata which resulted in 1,250 putative recombinant clones of which 850 were sequenced. SSR motifs were identified and their flanking sequences were utilized to design 328 SSR primer pairs. Of these, 48 SSR markers were employed for assessing genetic diversity among 76 mung bean accessions from various geographical locations in India. Two hundred and thirty four alleles with an average of 4.85 alleles per locus were detected at 48 loci. The polymorphic information content (PIC) per locus varied from 0.1 to 0.88 (average: 0.49 per locus). The observed and expected heterozygosities ranged from 0.40 to 0.95 and 0.40 to 0.81 respectively. Based on Jaccard’s similarity matrix, a dendrogram was constructed using the unweighted pair-group method with arithmetic averages (UPGMA) analysis which revealed that one accession from Bundi, Rajasthan was clustered out separately while remaining accessions were grouped into two major clusters. The markers generated in this study will help in expanding the repertoire of the available SSR markers thereby facilitating analysis of genetic diversity, molecular mapping and ultimately broadening the scope for genetic improvement of this legume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parida A, Raina SN, Narayan RKJ (1990) Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82(2):125–133

    Article  CAS  Google Scholar 

  2. Guo X, Li T, Tang K, Liu RH (2012) Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J Agric Food Chem 60(44):11050–11055

    Article  CAS  PubMed  Google Scholar 

  3. Ramesh CK, Rehman A, Prabhakar BT, Vijay ABR, Aditya RSJ (2011) Antioxidant potentials in sprouts vs. seeds of Vigna radiata and Macrotyloma uniflorum. J Appl Pharm Sci 1(7):99–110

    Google Scholar 

  4. Lavanya RG, Srivastava J, Ranade SA (2008) Molecular assessment of genetic diversity in mung bean germplasm. J Genet 87(1):65–74

    Article  CAS  PubMed  Google Scholar 

  5. Somta P, Seehalak W, Srinives P (2009) Molecular diversity assessment of AVRDC—World vegetable center elite-parental mungbeans. Breed Sci 59:149–157

    Article  CAS  Google Scholar 

  6. Raturi A, Singh SK, Sharma V, Pathak R (2012) Stability and environmental indices analyses for yield attributing traits in Indian Vigna radiata genotypes under arid conditions. Asian J Agric Sci 4:126–133

    Google Scholar 

  7. Ali M, Gupta S (2012) Carrying capacity of Indian agriculture: pulse crops. Curr Sci 102(6):874–881

    Google Scholar 

  8. Arora RK, Nayar ER (1984) Wild relatives of crop plants in India. NBPGR Scientific monograph No. 7. National Bureau of Plant Genetic Resources, New Delhi

  9. Bisht IS, Bhatl KV, Lakhanpaul S, Latha M, Jayan PK, Biswas BK, Singh AK (2005) Diversity and genetic resources of wild Vigna species in India. Genet Res Crop Evol 52:53–68

    Article  Google Scholar 

  10. Chen NC, Parrot JF, Jacobs T, Baker LR, Carlson PS (1977) Interspecific hybridization of food legumes by unconventional methods of plant breeding. In: Proceedings first international mungbean symposium: Asian Vegetable Research and Development Centre. Shanhnua, pp 247–252

  11. Chowdhury RK, Chowdhury JB (1977) Intergeneric hybridization between Vigna mungo L. Hepper and Phaseolus calcaratus RoxB. Indian J Agric Sci 47:117–121

    Google Scholar 

  12. Ahn CS, Hartmann RW (1977) Interspecific hybridization among four species of the genus Vigna. In: Proceedings of first international mungbean symposium. Asian vegetable Research and Development Centre, Shanhua, pp 240–246

  13. Gosal SS, Bajaj YPS (1983) Interspecific hybridization between Vigna mungo and Vigna radiata through embryo culture. Euphytica 32:129–137

    Article  Google Scholar 

  14. Bharathi A, VijaySelvaraj KS, Veerabadhiran P, Subba Lakshmi B (2006) Advances in winter pulse pathology research in Australia. Australas Plant Pathol 1(2):120–124

    Google Scholar 

  15. Salam MU, Davidson JA, Thomas GJ, Ford R, Jones RAC, Lindbeck KD, MacLeod WJ, Kimber RBE, Galloway J, Mantri N, Leur JAG, Coutts BA, Freeman AJ, Richardson H, Aftab M, Moore KJ, Knights EJ, Nash P, Verrell A (2011) Advances in winter pulse pathology research in Australia. Australas Plant Pathol 40(6):549–567

    Article  Google Scholar 

  16. Mantri N, Pang E, Ford R (2010) Molecular biology for stress management. In: Yadav SS, McNeil DN, Weeden N, Patil SS (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 377–408

    Chapter  Google Scholar 

  17. Santalla M, Power JB, Davery MR (1998) Genetic diversity in mungbean germplasm revealed by RAPD markers. Plant Breed 117(5):473–478

    Article  Google Scholar 

  18. Lakhanpaul S, Chadha S, Bhat KV (2000) Random amplified polymorphic DNA (RAPD) analysis in Indian mungbean (Vigna radiata L. Wilczek) cultivars. Genetica 109(3):227–234

    Article  CAS  PubMed  Google Scholar 

  19. Bhat KV, Lakhanpaul S, Chadha S (2005) Amplified fragment length polymorphism (AFLP) analysis of genetic diversity in Indian mungbean (Vigna radiata (L.) Wilczek) cultivars. Indian J Biotech 4:56–64

    CAS  Google Scholar 

  20. Lambridges CL, Lawn RL (2000) Two genetic linkage maps of mungbean using RFLP and RAPD markers. Aust J Agric Res 51(4):415–425

    Article  Google Scholar 

  21. Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet 105(1):160–166

    Article  CAS  PubMed  Google Scholar 

  22. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross species genetic markers for Medicago spp. Theor Appl Genet 108(3):414–422

    Article  CAS  PubMed  Google Scholar 

  23. Gautami B, Ravi K, Narasu ML, Hoisington DA, Varshney RK (2009) Novel set of groundnut SSR markers for germplasm analysis and interspecific transferability. Int J Integr Biol (IJIB) 7(2):100–106

    CAS  Google Scholar 

  24. Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120(4):311–317

    Article  CAS  Google Scholar 

  25. Koebner RMD, Donini R, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106(3):550–558

    CAS  PubMed  Google Scholar 

  26. Taller JM, Bernardo R (2004) Diverse adapted populations for improving northern maize inbreds. Crop Sci 44(4):1444–1449

    Article  Google Scholar 

  27. Wang L, Guan Y, Guan R, Li Y, Ma Y, Dong Z, Liu X, Zhang H, Zhang Y, Liu Z, Chang R, Xu H, Li L, Lin F, Luan W, Yan Z, Ning X, Zhu L, Cui Y, Piao R, Liu Y, Chen P, Qiu L (2006) Establishment of Chinese soybean Glycine max core collections with agronomic traits and SSR markers. Euphytica 151(2):215–223

    Article  Google Scholar 

  28. Cao QJ, Lu BR, Xia H, Rong J, Sala F, Spada A, Grassi F (2006) Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot 98(6):1241–1252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Blair MW, Giraldo MC, Buendia HFE, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113(1):100–109

    Article  CAS  PubMed  Google Scholar 

  30. Gimenes MA, Hoshino AA, Barbosa AV, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 7:9

    Article  PubMed Central  PubMed  Google Scholar 

  31. Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118(2):327–338

    Article  CAS  PubMed  Google Scholar 

  32. Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112(8):1416–1428

    Article  CAS  PubMed  Google Scholar 

  33. Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S (2011) Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 12:117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Choudhary S, Gaur R, Gupta S, Bhatia S (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124(8):1449–1462

    Article  CAS  PubMed  Google Scholar 

  35. Mastan SG, Sudheer PDVN, Rahman H, Ghosh A, Rathore MS, Prakash CR, Chikara J (2012) Molecular characterization of intra-population variability of Jatropha curcas L. using DNA based molecular markers. Mol Biol Rep 39(4):4383–4390

    Article  CAS  PubMed  Google Scholar 

  36. Baldwin S, Pither-Joyce M, Wright K, Chen L, McCallum J (2012) Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol Breed 30(3):1401–1411

    Article  CAS  Google Scholar 

  37. Rai MK, Phulwaria M, Shekhawat NS (2013) Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species. Mol Biol Rep 40(8):5067–5071

    Article  CAS  PubMed  Google Scholar 

  38. Bali S, Raina SN, Bhat V, Aggarwal RK, Goel S (2013) Development of a set of genomic microsatellite markers in tea (Camellia L.) (Camelliaceae). Mol Breed 32(3):735–741

    Article  CAS  Google Scholar 

  39. Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Mohan SM, Mallikarjuna N, Upadhyaya H, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37(5):811–820

    Article  CAS  PubMed  Google Scholar 

  40. Kumar SV, Tan SG, Quah SC, Yusoff K (2002) Isolation of microsatellite markers in mungbean, Vigna radiata. Mol Ecol Notes 2(2):96–98

    Article  CAS  Google Scholar 

  41. Kumar SV, Tan SG, Quah SC, Yusoff K (2002) Isolation and characterization of seven tetranucleotide microsatellite loci in mung bean, Vigna radiata. Mol Ecol Notes 2:293–295

    Article  CAS  Google Scholar 

  42. Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110(1):151–156

    Article  CAS  PubMed  Google Scholar 

  43. Gwag JG, Chung WK, Chung HK, Lee JH, Ma KH, Dixit A, Park YJ, Cho EG, Kim TS, Lee SH (2006) Characterization of new microsatellite markers in mungbean, Vigna radiata (L.). Mol Ecol Notes 6(4):1132–1134

    Article  CAS  Google Scholar 

  44. Seehalak W, Somta P, Sommanas W, Srinives P (2009) Microsatellite markers for mungbean developed from sequence database. Mol Ecol Res 9(3):862–864

    Article  CAS  Google Scholar 

  45. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.)Wilczek). BMC Plant Biol 9:137

    Article  PubMed Central  PubMed  Google Scholar 

  46. Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10(6):1939–1943

    Article  CAS  Google Scholar 

  47. Moe KT, Chung J-W, Cho Y-I, Moon J-K, Ku J-H, Jung J-K, Lee J, Park Y-J (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Integr Plant Biol 53(1):63–73

    Article  CAS  PubMed  Google Scholar 

  48. Singh N, Singh H, Nagarajan P (2013) Development of SSR markers in mung bean, Vigna radiata (L.) Wilczek using in silico methods. J Crop Weed 9(1):69–74

    Google Scholar 

  49. Gupta SK, Bansal R, Gopalakrishna T (2014) Genome-wide SNP discovery in mungbean by Illumina HiSeq. Theor Appl Genet 195:245–258

    CAS  Google Scholar 

  50. Van K, Kang YJ, Han KS, Lee YH, Gwag JG, Moon JK, Lee SH (2013) Genome-wide SNP discovery in mungbean by Illumina HiSeq. Theor Appl Genet 126(8):2017–2027

    Article  CAS  PubMed  Google Scholar 

  51. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2(12):e1367

    Article  PubMed Central  PubMed  Google Scholar 

  52. Yang X, Xu Y, Shah T, Li H, Han Z, Li J, Yan J (2011) Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica 139(8):1045–1054

    Article  CAS  PubMed  Google Scholar 

  53. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plant producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17(1):74

    Article  Google Scholar 

  55. Malmberg R, Messing J, Sussex I (1985) Molecular biology of plants: a laboratory course manual. Cold Spring Harbor, New York

    Google Scholar 

  56. Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16(4):656–662

    CAS  PubMed  Google Scholar 

  57. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  58. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Castelo AT, Martins W, Gao GR (2002) TROLL-tandem repeat occurrence locator. Bioinformatics 18(4):634–636

    Article  CAS  PubMed  Google Scholar 

  60. Rozen S, Skaletsky HJ (1997) PRIMER 3. Code available at, http://www.genome.wi.mit.edu/genome_software/other/primer3.html

  61. Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118(3):591–608

    Article  CAS  PubMed  Google Scholar 

  62. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  63. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186

    Article  CAS  PubMed  Google Scholar 

  64. Jaccard P (1908) Nouvelles recherches sur la distribution florale Bulletin de la societe vauodoise des sciences. Naturelles 44:223–270

    Google Scholar 

  65. Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, in: Version 2. 1. Exeter Software, Applied Biostatistics Setauket, NewYork

  66. Yap IV, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI, Philippines

    Google Scholar 

  67. Bhattramakki D, Dong J, Chhabra K, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43(6):988–1002

    Article  CAS  PubMed  Google Scholar 

  68. Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  CAS  PubMed  Google Scholar 

  69. Gupta P, Varshney R (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113(3):163–185

    Article  CAS  Google Scholar 

  70. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11(1):1–16

    Article  CAS  PubMed  Google Scholar 

  71. Somta P, Musch W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T, Sorajjapinun W, Seehalak W, Tragoonrung S, Srinives P (2008) New microsatellite markers isolated from mungbean (Vigna radiata (L.) Wilczek). Mol Ecol Res 8(5):1155–1157

    Article  CAS  Google Scholar 

  72. Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7(8):e41304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Dan Z, Xu-Zhen C, Li-Xia W, Su-Hua W, Yan-Ling M (2010) Construction of mungbean genetic linkage map. Acta Agron Sin 36(6):932–939

    Google Scholar 

  74. Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12(6):1339–1348

    Article  CAS  PubMed  Google Scholar 

  75. Pestova F, Ganal MW, Roder MS (2000) Isolation and mapping of microstallite markers specific for the D-genome of bread wheat. Genome 43(4):689–697

    Article  Google Scholar 

  76. Jones ES, Dupal MP, Kolliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  77. Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113(2):270–279

    Article  CAS  PubMed  Google Scholar 

  78. Tsuruta SI, Hashiguchi M, Ebina M, Matsuo T, Yamamoto T, Kobayashi M, Takahara M, Nakagawa H, Akashi R (2005) Development and characterization of simple sequence repeat markers in Zoysia japonica Steud. Grassl Sci 51(3):249–257

    Article  CAS  Google Scholar 

  79. Saha MC, Cooper JD, Rouf Mian MA, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113(8):1449–1458

    Article  CAS  PubMed  Google Scholar 

  80. Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118(4):821–829

    Article  CAS  PubMed  Google Scholar 

  81. Wang YW, Samuels TD, Wu YQ (2011) Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet 122(4):677–686

    Article  CAS  PubMed  Google Scholar 

  82. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes survey and analysis. Genome Res 10(7):967–981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222

    Article  Google Scholar 

  85. Varshney RK, Kumar A, Balyan HS, Roy JK, Prasad M, Gupta PK (2000) Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Mol Biol Rep 18(1):5–16

    Article  CAS  Google Scholar 

  86. Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2007) Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intercoding regions. Bioinformatics 23(1):1–4

    Article  CAS  PubMed  Google Scholar 

  87. Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86

    Article  CAS  Google Scholar 

  88. Shokeen B, Choudhary S, Sethy NK, Bhatia S (2011) Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Ann Bot (Lond) 108(2):321–336

    Article  CAS  Google Scholar 

  89. Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol 8:55

    Article  PubMed Central  PubMed  Google Scholar 

  90. Jena SN, Srivastava A, Rai KM, Ranjan A, Singh SK, Nisar T, Srivastava M, Bag SK, Mantri S, Asif MH, Yadav HK, Tuli R, Sawant SV (2012) Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theor Appl Genet 124(3):565–576

    Article  CAS  PubMed  Google Scholar 

  91. Shokeen B, Sethy NK, Kumar S, Bhatia S (2007) Isolation and characterization of microsatellite markers for analysis of molecular variation in the medicinal plant Madagascar periwinkle (Catharanthus roseus (L.) G. Don). Plant Sci 172(3):441–451

    Article  CAS  Google Scholar 

  92. Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italic L.) P. Beauv.]. Plant Cell Rep 31(2):323–337

    Article  CAS  PubMed  Google Scholar 

  93. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  94. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  95. Morgante M, Olivieri AM (1993) PCR amplified microsatellites as markers in plant genetics. Plant J 3(1):175–182

    Article  CAS  PubMed  Google Scholar 

  96. Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21(5):1111–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  98. Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  99. Tomooka N, Lairungreang C, Nakeeraks P, Egawa Y, Thavarasook C (1991) Center of genetic diversity, dissemination pathways and landrace differentiation in mung bean. In: Thavasarook C (ed) Proceedings of mung bean meeting 90, Tropical agricultural Research Center, Japan, Thailand office, Bangkok, pp 47–71

  100. Sangiri C, Kaga A, Tomooka N, Vaughan D, Srinives P (2007) Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Aust J Bot 55:837–847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Institute of Plant Genome Research (NIPGR), New Delhi, India. Financial assistance provided by the Department of Biotechnology (DBT), India through the Project Grant (DBT-PDF Program, IISc, Bangalore) to DS is thankfully acknowledged. We are thankful to Dr. Arjun Lal (NBPGR, New Delhi) and Dr. Rakesh Aggarwal (CAZRI, Jodhpur) for providing the accessions of V. radiata for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabhyata Bhatia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3436_MOESM1_ESM.doc

List of 328 V. radiata SSR primer pairs developed in this study. Their sequences, repeat motifs, annealing temperature (Tm), amplification product size (bp) and Genbank accession numbers are mentioned

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, D., Verma, P. & Bhatia, S. Expanding the repertoire of microsatellite markers for polymorphism studies in Indian accessions of mung bean (Vigna radiata L. Wilczek). Mol Biol Rep 41, 5669–5680 (2014). https://doi.org/10.1007/s11033-014-3436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3436-7

Keywords

Navigation