Skip to main content

Molecular Biology for Stress Management

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Breeding for drought tolerance in legumes has been mired by its polygenic control. In the past decade, efforts have been made to use molecular tools for dissecting the genetic basis of drought tolerance. Molecular and genomic analyses have facilitated gene discovery and enabled genetic engineering using several functional or regulatory genes to activate specific or broad pathways related to drought tolerance. Model plants have been established for legumes and other crops that serve as templates for studies allowing faster information generation and transfer between similar species. Molecular tools have been successfully employed in cereal crops leading to near commercialisation of genetically engineered wheat and rice tolerant to drought stress. However, the progress made in understanding drought tolerance in legumes is way behind that in cereal crops. We have to be cautious about the fact that legumes would react differently to drought stress compared to cereals as they are physiologically different in areas of grain filling, root architecture and nitrogen fixation. The information available about drought tolerance mechanism from studying model plant Arabidopsis and crops like wheat and rice, needs to be validated in legumes using comparative genomic tools. The focus should also be on links between corporate research organizations, academic institutions and international organizations to avoid duplication of effort and to maximize efficient utilization of limited resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.A. Acosta-Gallegos, R. Ochoa-Marquez, M.P. Arrieta-Montiel, F. Ibarra-Pérez, A. Pajarito-Ravelero, and I. Sánchez-Valdéz (1995). Registration of ‘Pinto Villa’ common bean. Crop Sci 35, 1211.

    Article  Google Scholar 

  • F. Ahmad, P. Gaur, and J. Croser (2005). Chickpea (Cicer arietinum L.). In: Singh, R. and Jauhar, P. (eds.), Genetic resources, chromosome engineering and crop improvement – Grain legumes, Vol. 1, pp. 185–214. CRC Press, USA.

    Google Scholar 

  • E.A. Ainsworth, A. Rogers, L.O. Vodkin, A. Walter, and U. Schurr (2006). The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142, 135–147.

    Article  CAS  PubMed  Google Scholar 

  • R. Alba, Z. Fei, P. Payton, Y. Liu, S.L. Moore, P. Debbie, J. Cohn, M. D‘Ascenzo, J.S. Gordon, and J.K.C. Rose (2004). ESTs, cDNA microarrays, and gene expression profiling: Tools for dissecting plant physiology and development. Plant J 39, 697–714.

    Article  CAS  PubMed  Google Scholar 

  • R. Aroca, A. Ferrante, P. Vernieri, and M.J. Chrispeels (2006). Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in phaseolus vulgaris plants. Ann Bot 98, 1301.

    Article  CAS  PubMed  Google Scholar 

  • R. Aroca, R. Porcel, and J.M. Ruiz-Lozano (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytol 173, 808–816.

    Article  CAS  PubMed  Google Scholar 

  • M.J. Asins (2002). Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121, 281–291.

    Article  Google Scholar 

  • C.W.B. Bachem, R. Oomen, and R.G.F. Visser (1998). Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep 16, 157–157.

    Article  CAS  Google Scholar 

  • D. Bartels and R. Sunkar (2005). Drought and salt tolerance in plants. Crit Rev Plant Sci 24, 23–58.

    Article  CAS  Google Scholar 

  • S. Bhatnagar, C.A. King, L. Purcell, and J.D. Ray (2005) Identification and Mapping of Quantitative Trait Loci Associated with Crop Response to Water-Deficit Stress in Soybean [Glycine Max (L.) Merr.]: The ASA-CSSA-SSSA International Annual Meeting (Abstract), November 6–10, 2005. p. 9.

    Google Scholar 

  • P. Bhatnagar-Mathur, M.J. Devi, D.S. Reddy, M. Lavanya, V. Vadez, R. Serraj, K. Yamaguchi-Shinozaki, and K.K. Sharma (2007). Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26, 1–12.

    Article  CAS  Google Scholar 

  • M.W. Blair, M.C. Munoz, and S.E. Beebe (2002). QTL analysis of drought and abiotic stress tolerance in common bean RIL populations. Annual Report, Biotechnology Research Project Cali, Colombia: CIAT, 68–72.

    Google Scholar 

  • P. Boominathan, R. Shukla, A. Kumar, D. Manna, D. Negi, P.K. Verma, and D. Chattopadhyay (2004). Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol 135, 1608–1620.

    Article  CAS  PubMed  Google Scholar 

  • M. Boudsocq and C. Lauriere (2005). Osmotic signaling in plants: Multiple pathways mediated by emerging kinase families. Plant Physiol 138, 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  • M. Bouslama and W.T. Schapaugh, Jr. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci 24, 933.

    Article  Google Scholar 

  • T. Boutraa and F.E. Sanders (2001). Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). J Agron Crop Sci 187, 251–257.

    Article  Google Scholar 

  • S. Brenner, M. Johnson, J. Bridgham, G. Golda, D.H. Lloyd, D. Johnson, S. Luo, S. McCurdy, M. Foy, and M. Ewan (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18, 630–634.

    Article  CAS  PubMed  Google Scholar 

  • J. Buitink, J.J. Leger, I. Guisle, B.L. Vu, S. Wuillème, G. Lamirault, A.L. Bars, N.L. Meur, A. Becker, and H. Küster (2006). Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47, 735–750.

    Article  CAS  PubMed  Google Scholar 

  • T.E. Carter, Jr., R.L. Nelson, C. Sneller, and C. Zhanglin (2004). Genetic diversity in soybean. In: Boerma, H.R. and Je, S. (eds.), Soybeans: Improvement, production, and uses, pp. 303–416. American Society of Agronomy Monograph Series, Madison, WI, USA.

    Google Scholar 

  • P. Castiglioni, D. Warner, R.J. Bensen, D.C. Anstrom, J. Harrison, M. Stoecker, M. Abad, G. Kumar, S. Salvador, and R. D‘Ordine (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147, 446.

    Article  CAS  PubMed  Google Scholar 

  • S. Chandra, H.K. Buhariwalla, J. Kashiwagi, S. Harikrishna, K.R. Sridevi, L. Krishnamurthy, R. Serraj, and J.H. Crouch (2004) Identifying QTL-linked markers in marker-deficient crops. International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004.

    Google Scholar 

  • Y. Chen, P. Chen, and B.G. de los Reyes (2006). Differential responses of the cultivated and wild species of soybean to dehydration stress. Crop Sci 46, 2041–2046.

    Article  CAS  Google Scholar 

  • D. Chen, M. Liang, D. DeWald, B. Weimer, M. Peel, B. Bugbee, J. Michaelson, E. Davis, and Y. Wu (2008). Identification of dehydration responsive genes from two non-nodulated alfalfa cultivars using Medicago truncatula microarrays. Acta Physiol Plantarum DOI 10.1007/s11738-007-0107–5.

    Google Scholar 

  • D. Chinchilla, F. Merchan, M. Megias, A. Kondorosi, C. Sousa, and M. Crespi (2003). Ankyrin protein kinases: A novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Mol Biol 51, 555–566.

    Article  CAS  PubMed  Google Scholar 

  • S. Cho, J. Kumar, J. Shultz, K. Anupama, F. Tefera, and F. Muehlbauer (2002). Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128, 285–292.

    Article  CAS  Google Scholar 

  • N. Cisse, M. Ndiaye, S. Thiaw, and A.E. Hall (1997). Registration of’Melakh’cowpea. Crop Sci 37, 1978.

    Article  Google Scholar 

  • M.J. Cobos, M. Iruela, J. Rubio, T. Millan, J.I. Cubero, and J. Gil (2004) Genetic analyses of flowering time in a chickpea interspecific cross (Cicerarietinum L.× C. reticulatum Lad.). 5th European Conference on Grain Legumes AEP, Dijon, France.

    Google Scholar 

  • J.M. Colmenero-Flores, F. Campos, A. Garciarrubio, and A.A. Covarrubias* (1997). Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: Identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35, 393–405.

    Article  CAS  PubMed  Google Scholar 

  • D. Contour-Ansel, M.L. Torres-Franklin, and D.E.C. Cruz (2006). Glutathione reductase in leaves of cowpea: Cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98, 1279–1287.

    Article  CAS  PubMed  Google Scholar 

  • R. Creelman and J. Mullet (1995). Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92, 4114–4119.

    Article  CAS  PubMed  Google Scholar 

  • M. Crespi (2007). Analysis of the response to abiotic stress in legumes. Retrieved 5.01.08, 2008, from http://www.grainlegumes.com.

  • M.H. Cruz de Carvalho, A. d’Arcy-Lameta, H. Roy-Macauley, M. Gareil, H. El Maarouf, A.T. Pham-Thi, and Y. Zuily-Fodil (2001). Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett 492, 242–246.

    Article  Google Scholar 

  • A. D‘Arcy-Lameta, R. Ferrari-Iliou, D. Contour-Ansel, A. Pham-Thi, and Y. Zuily-Fodil (2006). Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot 97, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • D.A. Del Rosario and F.F. Fajardo (1988). Morphophysiological responses to water stress of ten varieties of peanut (Arachis hypogaea L.). Philippine J Crop Sci 13, 34.

    Google Scholar 

  • B. Diers (2004) Soybean genetic improvement through conventional and molecular based strategies. 5th European Conference on Grain Legumes, Djion, France, 7–11 June, 2004, pp. 147–148.

    Google Scholar 

  • N.N. Diop, M. Kidric, A. Repellin, M. Gareil, A. d‘Arcy-Lameta, A.T. Pham Thi, and Y. Zuily-Fodil (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577, 545–550.

    Article  CAS  PubMed  Google Scholar 

  • M.A. Dita, N. Rispail, E. Prats, D. Rubiales, and K.B. Singh (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147, 1–24.

    Article  Google Scholar 

  • A. Djekoun and C. Planchon (1991). Water status effect on dinitrogen fixation and photosynthesis in soybean. Agron J 83, 316.

    Article  Google Scholar 

  • K.N. Dramé, D. Clavel, A. Repellin, C. Passaquet, and Y. Zuily-Fodil (2007). Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiol Biochem 45, 236–243.

    Article  PubMed  CAS  Google Scholar 

  • J.W. Dudley (1993). Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci 33, 660.

    Article  CAS  Google Scholar 

  • J.D. Ehlers and A.E. Hall (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53, 187–204.

    Article  Google Scholar 

  • H. El-Maarouf, Y. Zuily-Fodil, M. Gareil, A. d‘Arcy-Lameta, and A.T. Pham-Thi (1999). Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • H.O.A. Elawad and A.E. Hall (2002). Registration of’Ein El Gazal' cowpea. Crop Sci 42, 1745–1746.

    Article  Google Scholar 

  • T.J. Flowers (2004). Improving crop salt tolerance. J Exp Bot 55, 307.

    Article  CAS  PubMed  Google Scholar 

  • M.A. Frahm, J.C. Rosas, N. Mayek-Pérez, E. López-Salinas, J.A. Acosta-Gallegos, and J.D. Kelly (2004). Breeding beans for resistance to terminal drought in the Lowland tropics. Euphytica 136, 223–232.

    Article  Google Scholar 

  • P.M. Gaur, L. Krishnamurthy, and J. Kashiwagi (2008). Improving drought-avoidance root traits in chickpea (Cicer arietinum L.): Current status of research at ICRISAT. Plant Production Sci 11, 3–11.

    Article  Google Scholar 

  • I. Gazendam and D. Oelofse (2007). Isolation of cowpea genes conferring drought tolerance: Construction of a cDNA drought expression library. Water SA 33, 387–391.

    CAS  Google Scholar 

  • P. Gepts and F.A. Bliss (1985). F1 hybrid weakness in the common bean: Differential geographic origin suggets two gene pools in cultivated bean germplasm. J Heredity 76, 447.

    Google Scholar 

  • E.M. Gonzalez, A.J. Gordon, C.L. James, and C. Arrese-Igor (1995). The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46, 1515–1523.

    Article  CAS  Google Scholar 

  • D.O. Gonzalez and L.O. Vodkin (2006). Clustering analysis of transcript abundance in soybean cotyledons during germination and emergence. Plant and Animal Genome XIV, San Diego, CA.

    Google Scholar 

  • P.H. Graham and P. Ranalli (1997). Common bean (Phaseolus vulgaris L.). Field Crops Res 53, 131–146.

    Article  Google Scholar 

  • W.C. Gregory, A. Krapovickas, and M.P. Gregory (1980). Structure, variation, evolution and classification in Arachis. In: Summerfield, R.J. and Bunting, A.H. (eds.), Advances in legume sciences, pp. 469–481. Royal Botanical Gardens, Kew.

    Google Scholar 

  • B.Z. Guo, G. Xu, Y.G. Cao, C.C. Holbrook, and R.E. Lynch (2006). Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223, 512–520.

    Article  CAS  PubMed  Google Scholar 

  • M.J. Harrison (2000). Molecular genetics of model legumes. Trends Plant Sci 5, 414–415.

    Article  CAS  PubMed  Google Scholar 

  • B.A. Hauser, L.H. Pratt, and M.M. Cordonnier-Pratt (1997). Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201, 379–387.

    Article  CAS  PubMed  Google Scholar 

  • C.Y. He, J.S. Zhang, and S.Y. Chen (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. TAG Theor Appl Genet 104, 1125–1131.

    Article  CAS  Google Scholar 

  • R. Hidalgo (1991). CIAT’s world phaseolus collection. In: van Schoonhoven, A. and Voysest, O. (eds.), Common beans: Research for crop improvement, pp. 163–197. CIAT, Cali, Colombia.

    Google Scholar 

  • C.C. Holbrook (2001). Status of the Arachis germplasm collection in the United States. Peanut Sci 28, 84–88.

    Article  Google Scholar 

  • S. Iuchi, M. Kobayashi, K. Yamaguchi-Shinozaki, and K. Shinozaki (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123, 553–562.

    Article  CAS  PubMed  Google Scholar 

  • S. Iuchi, K. Yamaguchi-Shinozaki, T. Urao, T. Terao, and K. Shinozaki (1996). Novel drought-inducible genes in the highly drought-tolerant cowpea: Cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol 37, 1073–1082.

    CAS  PubMed  Google Scholar 

  • N. Jongrungklang, B. Toomsan, N. Vorasoot, S. Jogloy, T. Kesmala, and A. Patanothai (2008). Identification of peanut genotypes with high water use efficiency under drought stress conditions from peanut germplasm of diverse origins. Asian J Plant Sci 7, 628–638.

    Article  Google Scholar 

  • J. Kashiwagi, L. Krishnamurthy, S. Singh, and H.D. Upadhyaya (2006). Variation of SPAD chlorophyll meter readings (SCMR) in the mini-core germplasm collection of chickpea. J SAT Agri Res 2, 3.

    Google Scholar 

  • J. Kashiwagi, L. Krishnamurthy, H.D. Upadhyaya, H. Krishna, S. Chandra, V. Vadez, and R. Serraj (2005). Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146, 213–222.

    Article  Google Scholar 

  • T. Kavar, M. Maras, M. Kidrič, J. Šuštar-Vozlič, and V. Meglič (2008). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21, 159–172.

    Article  CAS  Google Scholar 

  • J.D. Kelly, G.L. Hosfield, G.V. Varner, M.A. Uebersax, and J. Taylor (1999). Registration of’Matterhorn' great northern bean. Crop Sci 39, 589–590.

    Article  Google Scholar 

  • Y.J. Kim, J.E. Kim, J.H. Lee, M.H. Lee, H.W. Jung, Y.Y. Bahk, B.K. Hwang, I. Hwang, and W.T. Kim (2004). The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556, 127–136.

    Article  CAS  PubMed  Google Scholar 

  • G. Kocsy, R. Laurie, G. Szalai, V. Szilagyi, L. Simon-Sarkadi, G. Galiba, and J.A. Ronde (2005). Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plantarum 124, 227–235.

    Article  CAS  Google Scholar 

  • C. Kole (2007). Genome mapping and molecular breeding in plants. Springer, Heidelberg.

    Google Scholar 

  • B.K. Kpoghomou, V.T. Sapra, and C.A. Beyl (1990a). Screening for Drought Tolerance: Soybean Germination and its Relationship to Seedling Responses. J Agron Crop Sci 164, 153–159.

    Article  Google Scholar 

  • B.K. Kpoghomou, V.T. Sapra, and C.A. Beyl (1990b). Sensitivity to Drought Stress of Three Soybean Cultivars During Different Growth Stages. J Agron Crop Sci 164, 104–109.

    Article  Google Scholar 

  • J. Kreps, Y. Wu, H. Chang, T. Zhu, X. Wang, and J. Harper (2002). Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol 130, 2129–2141.

    Article  CAS  PubMed  Google Scholar 

  • J. Kumar, S.C. Sethi, C. Johansen, T.G. Kelley, M.M. Rahman, and H.A. van Rheenen (1996). Potential of short-duration chickpea varieties. Indian J Dryland Agri Res Dev 11, 28–32.

    Google Scholar 

  • X.P. Li, A.G. Tian, G.Z. Luo, Z.Z. Gong, J.S. Zhang, and S.Y. Chen (2005). Soybean DRE-binding transcription factors that are responsive to abiotic stresses. TAG Theor Appl Genet 110, 1355–1362.

    Article  CAS  Google Scholar 

  • P. Liang and A.B. Pardee (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  CAS  PubMed  Google Scholar 

  • G. Liu, J.I.A. Chen, and X. Wang (2006). VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant Cell Environ 29, 2091–2099.

    Article  CAS  PubMed  Google Scholar 

  • Z. Liu, B.J. Park, A. Kanno, and T. Kameya (2005). The Novel Use of a Combination of Sonication and Vacuum Infiltration in Agrobacterium-mediated Transformation of Kidney Bean (Phaseolus vulgaris L.) with lea Gene. Mol Breed 16, 189–197.

    Article  CAS  Google Scholar 

  • M. Luo, P. Dang, B.Z. Guo, G. He, C.C. Holbrook, M.G. Bausher, and R.D. Lee (2005a). Generation of Expressed Sequence Tags (ESTs) for Gene Discovery and Marker Development in Cultivated Peanut. Crop Sci 45, 346–353.

    Article  CAS  Google Scholar 

  • M. Luo, X.Q. Liang, P. Dang, C.C. Holbrook, M.G. Bausher, R.D. Lee, and B.Z. Guo (2005b). Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169, 695–703.

    Article  CAS  Google Scholar 

  • R.S. Malhotra and M.C. Saxena (2002) Strategies for overcoming drought stress in chickpea. Caravan, ICARDA.

    Google Scholar 

  • N.L. Mantri, R. Ford, T.E. Coram, and E.C.K. Pang (2007). Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genom 8, 303.

    Article  CAS  Google Scholar 

  • A.R. Matos, A. d’Arcy-Lameta, M. França, S. Pêtres, L. Edelman, J.C. Kader, Y. Zuily-Fodil, and A.T. Pham-Thi (2001). A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491, 188–192.

    Article  CAS  PubMed  Google Scholar 

  • T. Matsui and B.B. Singh (2003). Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agri 39, 29–38.

    Article  Google Scholar 

  • M.A.R. Mian, D.A. Ashley, and H.R. Boerma (1998). An additional QTL for water use efficiency in soybean. Crop Sci 38, 390–393.

    Article  Google Scholar 

  • M.A.R. Mian, M.A. Bailey, D.A. Ashley, R. Wells, T.E. Carter, W.A. Parrott, and H.R. Boerma (1996). Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36, 1252–1257.

    Article  CAS  Google Scholar 

  • S. Micheletto, L. Rodriguez-Uribe, R. Hernandez, R.D. Richins, J. Curry, and M.A. O’Connell (2007). Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173, 510–520.

    Article  CAS  Google Scholar 

  • J. Mitra (2001). Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80, 758–763.

    CAS  Google Scholar 

  • R. Moinuddin and Khanna-Chopra (2004). Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44, 449–455.

    Google Scholar 

  • M.J. Monteros, G. Lee, A.M. Missaoui, T.E. Carter, Jr., and H.R. Boerma (2006) Identification and confirmation of QTL conditioning drought tolerance in Nepalese soybean PI471938. 11th Biennial conference on the molecular and cellular biology of the soybean, Lincoln, Nebraska, August 5–8, 2006.

    Google Scholar 

  • P.H. Moore and R. Ming (2008). Genomics of tropical plants. Springer, Heidelberg.

    Book  Google Scholar 

  • J.M. Morgan, B. Rodriguez-Maribona, and E.J. Knights (1991). Adaptation to Water-Deficit in Chickpea Breeding Lines by Osmoregulation: Relationship to Grain-Yields in the Field. Field Crops Res 27, 61–70.

    Article  Google Scholar 

  • R. Munns (2005). Tansley review: Genes and salt tolerance: bringing them together. New Phytol 167, 645–663.

    Article  CAS  PubMed  Google Scholar 

  • C.G. Muñoz-Perea, R.G. Allen, D.T. Westermann, J.L. Wright, and S.P. Singh (2007). Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 155, 393–402.

    Article  Google Scholar 

  • C.G. Munoz-Perea, H. Teran, R.G. Allen, J.L. Wright, D.T. Westermann, and S.P. Singh (2006). Selection for Drought Resistance in Dry Bean Landraces and Cultivars. Crop Sci 46, 2111.

    Article  Google Scholar 

  • N. Mutlu, P. Miklas, J. Reiser, and D. Coyne (2005). Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124, 282–287.

    Article  Google Scholar 

  • R.C. Nageswara Rao, H.S. Talwar, and G.C. Wright (2001). Rapid Assessment of Specific Leaf Area and Leaf Nitrogen in Peanut (Arachis hypogaea L.) using a Chlorophyll Meter. J Agron Crop Sci 186, 175–182.

    Article  Google Scholar 

  • L. Naya, R. Ladrera, J. Ramos, E.M. Gonzalez, C. Arrese-Igor, F.R. Minchin, and M. Becana (2007). The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144, 1104–1114.

    Article  CAS  PubMed  Google Scholar 

  • H. Nayyar, T.S. Bains, and S. Kumar (2005). Chilling stressed chickpea seedlings: Effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot 54, 275–285.

    Article  CAS  Google Scholar 

  • T. Oya, A.L. Nepomuceno, N. Neumaier, J.R.B. Farias, S. Tobita, and O. Ito (2004). Drought tolerance characteristics of Brazilian soybean cultivars. Plant Production Sci 7, 129–137.

    Article  Google Scholar 

  • J.B. Passioura, W. Spielmeyer, and D.G. Bonnett (2007). Requirements for success in marker-assisted breeding for drought-prone environments. In: Jenks, M.A., Hasegawa, P.M., and Jain, S.M. (eds.), Advances in molecular breeding toward drought and salt tolerant crops, pp. 479–500. Springer, Netherlands.

    Chapter  Google Scholar 

  • J.C. Popelka, N. Terryn, and T.J.V. Higgins (2004). Gene technology for grain legumes: Can it contribute to the food challenge in developing countries?. Plant Sci 167, 195–206.

    Article  CAS  Google Scholar 

  • R. Porcel, R. Azcón, and J.M. Ruiz-Lozano (2004). Evaluation of the role of genes encoding for ?1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65, 211–221.

    Article  CAS  Google Scholar 

  • R. Porcel, R. Azcon, and J.M. Ruiz-Lozano (2005). Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56, 1933–1942.

    Article  CAS  PubMed  Google Scholar 

  • R. Porcel, J.M. Barea, and J.M. Ruiz-Lozano (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157, 135–143.

    Article  CAS  Google Scholar 

  • L.C. Purcell and C.A. King (1996). Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. J Plant Nutri 19, 969–993.

    Article  CAS  Google Scholar 

  • P. Ramirez-Vallejo and J.D. Kelly (1998). Traits related to drought resistance in common bean. Euphytica 99, 127–136.

    Article  Google Scholar 

  • J.M. Ribaut, M. Banziger, J. Betran, C. Jiang, G.O. Edmeades, K. Dreher, and D. Hoisington (2002). Use of molecular markers in plant breeding: Drought tolerance improvement in tropical maize. In: Kang, M.S. (ed.), Quantitative genetics, genomics and plant breeding, pp. 85–99. CABI, Wallingford.

    Google Scholar 

  • J.M. Ribaut, M. Bänziger, T. Setter, G. Edmeades, and D. Hoisington (2004). Genetic dissection of drought tolerance in maize: A case study. In: Nguyen, H.T. and Blum, A., (eds.), Physiology and biotechnology integration for plant breeding, pp. 571–611. Marcel Dekker, Inc., New York.

    Google Scholar 

  • A.P. Rodiño, M. Santalla, A.M. De Ron, and S.P. Singh (2003). A core collection of common bean from the Iberian peninsula. Euphytica 131, 165–175.

    Article  Google Scholar 

  • L. Rodriguez-Uribe and M.A. O‘Connell (2006). A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). J Exp Bot 57, 1391–1398.

    Article  CAS  PubMed  Google Scholar 

  • S. Romo, E. Labrador, and B. Dopico (2001). Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39, 1017–1026.

    Article  CAS  Google Scholar 

  • J.A. de Ronde, R.N. Laurie, T. Caetano, M.M. Greyling, and I. Kerepesi (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138, 123–132.

    Article  Google Scholar 

  • J.A. de Ronde, M.H. Spreeth, and W.A. Cress (2000). Effect of antisense L-?1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul 32, 13–26.

    Article  Google Scholar 

  • R. Rosales-Serna, J. Kohashi-Shibata, J.A. Acosta-Gallegos, C. Trejo-López, J. Ortiz-Cereceres, and J.D. Kelly (2004). Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res 85, 203–211.

    Article  Google Scholar 

  • M.C. Rubio, E.M. Gonzalez, F.R. Minchin, K.J. Webb, C. Arrese-Igor, J. Ramos, and M. Becana (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plantarum 115, 531–540.

    Article  CAS  Google Scholar 

  • K.S. Rucker, C.K. Kvien, C.C. Holbrook, and J.E. Hook (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 22, 14–14.

    Article  Google Scholar 

  • D.J. Sammons, D.B. Peters, and T. Hymowitz (1978). Screening soybeans for drought resistance. I. Growth chamber procedure. Crop Sci 18, 1050.

    Article  Google Scholar 

  • D.J. Sammons, D.B. Peters, and T. Hymowitz (1979). Screening soybeans for drought resistance. II. Drought box procedure. Crop Sci 19, 719.

    Article  Google Scholar 

  • V.T. Sapra and A.O. Anaele (1991). Screening soybean genotypes for drought and heat tolerance. J Agron Crop Sci 167, 96–102.

    Article  Google Scholar 

  • N.P. Saxena (2003). Management of drought in chickpea: A holistic approach. In: Saxena, N.P. (ed.), Management of agricultural drought–agronomic and genetic options, pp. 103–122. Oxford and IBH Publishing Co., New Delhi, India.

    Google Scholar 

  • N.P. Saxena, C. Johansen, M.C. Saxena, and S.N. Silim (1993). Selection for drought and salinity tolerance in cool-season food legumes. In: Singh, K.B. and Saxena, M.C. (eds.), Breeding for stress tolerance in cool season food legumes, pp. 245–270. John Wiley and Sons, Chichester.

    Google Scholar 

  • M. Schena, D. Shalon, R.W. Davis, and P.O. Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (Washington) 270, 467–470.

    Article  CAS  Google Scholar 

  • K.A. Schneider, M.E. Brothers, and J.D. Kelly (1997b). Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37, 51.

    Article  CAS  Google Scholar 

  • K.A. Schneider, R. Rosales-Serna, F. Ibarra-Perez, B. Cazares-Enriquez, J.A. Acosta-Gallegos, P. Ramirez-Vallejo, N. Wassimi, and J.D. Kelly (1997a). Improving common bean performance under drought stress. Crop Sci 37, 43.

    Article  Google Scholar 

  • M. Seki, A. Kamei, M. Satou, T. Sakurai, M. Fujita, Y. Oono, K. Yamaguchi-Shinozaki, and K. Shinozaki (2003). Transcriptome analysis in abiotic stress conditions in higher plants. In: Hirt, H. and Shinozaki, K., (eds.), Topics in current genetics, Vol. 4, pp. 271–294. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • R. Serraj, L. Krishnamurthy, J. Kashiwagi, J. Kumar, S. Chandra, and J.H. Crouch (2004). Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88, 115–127.

    Article  Google Scholar 

  • L. Simon-Sarkadi, G. Kocsy, Á. Várhegyi, G. Galiba, and J.A. De Ronde (2006). Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Biol Plantarum 50, 793–796.

    Article  CAS  Google Scholar 

  • T.R. Sinclair, L.C. Purcell, C.A. King, C.H. Sneller, P. Chen, and V. Vadez (2007). Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Res 101, 68–71.

    Article  Google Scholar 

  • T.R. Sinclair, L.C. Purcell, V. Vadez, R. Serraj, C.A. King, and R. Nelson (2000). Identification of soybean genotypes with N2 fixation tolerance to water deficits. Crop Sci 40, 1803–1809.

    Article  Google Scholar 

  • K.B. Singh (1990). Prospects of developing new genetic material and breeding methodologies for chickpea improvement. In: Saxena, M.C., Cubero, J.I., and Wery, J. (eds.), Present status and future prospects of chickpea crop production and improvement in the Mediterranean countries, pp. 43–50. Options Méditerranéennes-Série-Séminaries-no 9-CIHEAM, Paris.

    Google Scholar 

  • B.B. Singh (2005). Cowpea [Vigna unguiculata (L.) Walp]. In: Singh, R.J. and Jauhar, P.P., (eds.), Genetic resources, chromosome engineering, and crop improvement: Grain legumes, Vol. 1, pp. 117–162. CRC Press, Boca Raton.

    Chapter  Google Scholar 

  • S.P. Singh and J. Ariel Gutiérrez (1984). Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33, 337–345.

    Article  Google Scholar 

  • B.B. Singh, Y. Mai-Kodomi, and T. Terao (1999). A simple screening method for drought tolerance in cowpea. Indian J Genet 59, 211–220.

    Google Scholar 

  • S.P. Singh, H. Teran, and J. Ariel Gutierrez (2001). Registration of SEA 5 and SEA 13 drought tolerant dry bean germplasm. Crop Sci 41, 276–277.

    Article  Google Scholar 

  • P.W. Skroch, J. Nienhuis, S. Beebe, M.J. Tohme, and F. Pedraza García (1998). Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve germplasm collections. Crop Sci 38, 488–496.

    Article  Google Scholar 

  • D.A. Somers, D.A. Samac, and P.M. Olhoft (2003). Recent advances in legume transformation. Plant Physiol 131, 892–899.

    Article  CAS  PubMed  Google Scholar 

  • P. Songsri, S. Jogloy, T. Kesmala, N. Vorasoot, C. Akkasaeng, A. Patanothai, and C.C. Holbrook (2008). Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci 48, 2245.

    Article  Google Scholar 

  • J.E. Specht, K. Chase, M. Macrander, G.L. Graef, J. Chung, J.P. Markwell, M. Germann, J.H. Orf, and K.G. Lark (2001). Soybean response to water: A QTL analysis of drought tolerance. Crop Sci 41, 493–509.

    Article  CAS  Google Scholar 

  • B.N. Sponchiado, J.W. White, J.A. Castillo, and P.G. Jones (1989). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agri 25, 249–257.

    Article  Google Scholar 

  • H.T. Stalker and C.E. Simpson (1995). Germplasm resources in Arachis. In: Pattee, H.E. and Stalker, H.T. (eds.), Advances in peanut science, pp. 14–53. American Peanut Research and Education Society, Stillwater, OK.

    Google Scholar 

  • K.A. Steele, D.S. Virk, R. Kumar, S.C. Prasad, and J.R. Witcombe (2007). Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101, 180–186.

    Article  Google Scholar 

  • J.G. Streeter, D.G. Lohnes, and R.J. Fioritto (2001). Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24, 429–438.

    Article  CAS  Google Scholar 

  • R.J. Summerfield, J.S. Pate, E.H. Roberts, and H.C. Wien (1985). The physiology of cowpeas. In: Singh, S.R. and Rachie, K.O. (eds.), Cowpea research, production and utilization, pp. 65–101. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • S.D. Tanksley (1993). Mapping polygenes. Ann Rev Genet 27, 205–233.

    Article  CAS  PubMed  Google Scholar 

  • C. Toker, C. Lluch, N.A. Tejera, R. Serraj, and K.H.M. Siddique (2007). Abiotic stresses. In: Yadav, S.S., Redden, R., Chen, W., and Sharma, B. (eds.), Chickpea breeding and management, pp. 474–496. CABI, UK.

    Chapter  Google Scholar 

  • G.A.M. Torres, C. Lelandais-Brière, E. Besin, M.F. Jubier, O. Roche, C. Mazubert, F. Corre-Menguy, and C. Hartmann (2003). Characterization of the expression of phaseolus vulgaris OCT1, a dehydration-regulated gene that encodes a new type of phloem transporter. Plant Mol Biol 51, 341–349.

    Article  CAS  PubMed  Google Scholar 

  • G.A.M. Torres, S. Pflieger, F. Corre-Menguy, C. Mazubert, C. Hartmann, and C. Lelandais-Brière (2006). Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Sci 171, 300–307.

    Article  CAS  Google Scholar 

  • K.J. Turk, A.E. Hall, and C.W. Asbell (1980). Drought adaptation of cowpea. I. Influence of drought on seed yield. Agron J 72, 413.

    Article  Google Scholar 

  • N.C. Turner, G.C. Wright, and K.H.M. Siddique (2001). Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71, 193–231.

    Article  Google Scholar 

  • T. Umezawa, M. Fujita, Y. Fujita, K. Yamaguchi-Shinozaki, and K. Shinozaki (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17, 113–122.

    CAS  PubMed  Google Scholar 

  • Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki (2005). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 138, 1185–1194.

    Google Scholar 

  • H.D. Upadhyaya (2003). Geographical patterns of variation for morphological and agronomic characteristics in the chickpea germplasm collection. Euphytica 132, 343–352.

    Article  Google Scholar 

  • H.D. Upadhyaya, M.E. Ferguson, and P.J. Bramel (2001). Status of the arachis germplasm collection at ICRISAT. Peanut Sci 28, 89–95.

    Article  Google Scholar 

  • I. Vaseva-Gemisheva, D. Lee, and E. Karanov (2005). Response of Pisum sativum cytokinin oxidase/dehydrogenase expression and specific activity to drought stress and herbicide treatments. Plant Growth Regul 46, 199–208.

    Article  CAS  Google Scholar 

  • A. Vasquez-Tello, Y. Zuily-Fodil, A. Pham-Thi, and J. Vieira da Silva (1990). Electrolyte, Pi leakages and soluble sugar content as physiological tests for screening resistance to water stress in Phaseolus and Vigna species. J Exp Bot 228, 827–832.

    Article  Google Scholar 

  • V.E. Velculescu, L. Zhang, B. Vogelstein, and K.W. Kinzler (1995). Serial analysis of gene expression. Science 270, 368–369.

    Article  Google Scholar 

  • D. Verdoy, M.M. Lucas, E. Manrique, A.A. Covarrubias, M.R. De Felipe, and J.J. Pueyo (2004). Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant Cell Environ 27, 757–767.

    Article  CAS  Google Scholar 

  • S. Vij and A.K. Tyagi (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5, 361–380.

    Article  CAS  PubMed  Google Scholar 

  • X. Wan and L. Li (2005). Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hygogaea L. DNA Sequence-J Sequencing Mapping 16, 217–223.

    Article  CAS  Google Scholar 

  • M.L. Wayne and L.M. McIntyre (2002). Combining mapping and arraying: An approach to candidate gene identification. Proc Natl Acad Sci 99, 14903–14906.

    Article  CAS  PubMed  Google Scholar 

  • J.W. White and J.A. Castillo (1992). Evaluation of diverse shoot genotypes on selected root genotypes of common bean under soil water deficits. Crop Sci 32, 762–765.

    Article  Google Scholar 

  • J.W. White, R. Ochoa, P.F. Ibarra, and S.P. Singh (1994). Inheritance of seed yield, maturity and seed weight of common bean (Phaseolus vulgaris) under semi-arid rainfed conditions. J Agri Sci 122, 265–273.

    Article  Google Scholar 

  • J. White and S.P. Singh (1991). Breeding for adaptation to drought. In: van Schoonhoven, A. and Voysest, O. (eds.), Common beans: Research for crop improvement, pp. 501–560. CIAT, Cali, Colombia.

    Google Scholar 

  • A.J. Wood, A.M. Kassem, and D.A. Lightfoot (2006) Genetic components of water stress tolerance in soybean. 11th Biennial Conference on the molecular cellular biology of the soybean, Lincoln, Nebraska, August 5–8, 2006.

    Google Scholar 

  • G.C. Wright, R.C. Rao, and G.D. Farquhar (1994). Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34, 92.

    Article  Google Scholar 

  • L. Xiong, K.S. Schumaker, and J.K. Zhu (2002). Cell signaling during cold, drought, and salt stress. Plant Cell Online 14, 165–183.

    Article  CAS  Google Scholar 

  • G.P. Xue and C.W. Loveridge (2004). HvDRF 1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP 2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37, 326–339.

    Article  CAS  PubMed  Google Scholar 

  • R.G. Xue, B. Zhang, and H.F. Xie (2007). Overexpression of a NTR1 in transgenic soybean confers tolerance to water stress. Plant Cell Tissue Organ Culture 89, 177–183.

    Article  CAS  Google Scholar 

  • S.S. Yadav, J. Kumar, S.K. Yadav, S. Singh, V.S. Yadav, N.C. Turner, and R. Redden (2007). Evaluation of Helicoverpa and drought resistance in desi and kabuli chickpea. Plant Genet Resour 4, 198–203.

    Google Scholar 

  • K. Yamaguchi-Shinozaki and K. Shinozaki (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57, 781–803.

    Article  CAS  PubMed  Google Scholar 

  • H. Yang, M. Shankar, B. Buirchell, M. Sweetingham, C. Caminero, and P. Smith (2002). Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). TAG Theor Appl Genet 105, 265–270.

    Article  CAS  Google Scholar 

  • M. You, J.G. Boersma, B.J. Buirchell, M.W. Sweetingham, K.H.M. Siddique, and H. Yang (2005). A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cell Mol Biol Lett 10, 123–134.

    CAS  PubMed  Google Scholar 

  • A.C. Zeven, J. Waninge, T. van Hintum, and S.P. Singh (1999). Phenotypic variation in a core collection of common bean (Phaseolus vulgaris L.) in the Netherlands. Euphytica 109, 93–106.

    Article  Google Scholar 

  • J.Y. Zhang, C.D. Broeckling, E.B. Blancaflor, M.K. Sledge, L.W. Sumner, and Z.Y. Wang (2005). Overexpression of WXP 1, a putative Medicago truncatula AP 2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42, 689–707.

    Article  CAS  PubMed  Google Scholar 

  • Z.S. Zlatev, F.C. Lidon, J.C. Ramalho, and I.T. Yordanov (2006). Comparison of resistance to drought of three bean cultivars. Biol Plantarum 50, 389–394.

    Article  CAS  Google Scholar 

  • J. Zou, S. Rodriguez-Zas, M. Aldea, M. Li, J. Zhu, D.O. Gonzalez, L.O. Vodkin, E. DeLucia, and S.J. Clough (2005). Expression profiling soybean response to pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant-Microbe Interactions 18, 1161–1174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mantri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mantri, N., Pang, E.C., Ford, R. (2010). Molecular Biology for Stress Management. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_19

Download citation

Publish with us

Policies and ethics