Skip to main content
Log in

Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Improved understanding of genetic diversity in onion and shallot (Allium cepa L.) is required to inform breeding and genetic resource conservation, and to enable development of association genetics and seed quality assurance methods. To develop quantitative estimates of diversity we estimated within- and among-population heterozygosity in a set of onion populations using genomic simple sequence repeat (SSR) markers developed by genomic skim sequencing. Primer sets (166) designed to flank SSR motifs identified were evaluated in a diverse set of lines, with 80 (48 %) being polymorphic. The 20 most robust single copy markers were scored in 12 individuals from 24 populations representing short-day to long-day adapted material from diverse environments. The average genetic diversity estimate (H e) per population was 0.3 (SD 0.08) and the average per marker was 0.49 (SD 0.2). The onion populations assessed in this survey were distinct with moderate to large population differentiation but also had high within-population variation (F st = 0.26). There was evidence of inbreeding (F is = 0.22) with observed heterozygosities lower than the expected. This marker resource will be applicable for DNA fingerprinting, measuring levels of inbreeding in breeding lines, assessing population structure for association mapping and expanding linkage maps that are principally based on expressed sequence tag-based markers. A Galaxy workflow was developed to facilitate bulk SSR marker design from next-generation sequence data. This study provides one of the first quantitative views of population genetic variation in onion and a practical toolset for further genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DH:

Doubled haploid

gSSR:

Genomic simple sequence repeat

PCA:

Principal components analysis

References

  • Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192

    Article  PubMed  CAS  Google Scholar 

  • Alan A, Brants A, Cobb E, Goldschmied P, Mutschler M, Earle E (2004) Fecund gynogenic lines from onion (Allium cepa L.) breeding materials. Plant Sci 167:1055–1066

    Article  CAS  Google Scholar 

  • Araki N, Masuzaki SI, Tsukazaki H, Yaguchi S, Wako T, Tashiro Y, Yamauchi N, Shigyo M (2010) Development of microsatellite markers in cultivated and wild species of sections Cepa and Phyllodolon in Allium. Euphytica 173:321–328

    Article  CAS  Google Scholar 

  • Baldwin SJ, Dodds KG, Auvray B, Genet RA, Macknight RC, Jacobs JME (2011) Association mapping of cold-induced sweetening in potato using historical phenotypic data. Ann Appl Biol 158:248–256

    Article  CAS  Google Scholar 

  • Bark OH, Havey MJ (1995) Similarities and relationships among populations of the bulb onion as estimated by nuclear RFLPs. Theor Appl Genet 90:407–414

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot (Lond) 76:113–176

    Article  CAS  Google Scholar 

  • Bradeen JM, Havey MJ (1995) Randomly amplified polymorphic DNA in bulb onion and its use to assess inbred integrity. J Am Soc Hort Sci 120:752–758

    CAS  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20(1004–1006):1008–1010

    Google Scholar 

  • Castoe TA, Poole AW, Gu W, Jason de Koning A, Daza JM, Smith EN, Pollock DD (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Res 10:341–347

    Article  CAS  Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera M, Vendramin G, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–1214

    Article  PubMed  Google Scholar 

  • Currah L (1981) Pollen competition in onion (Allium cepa L.). Euphytica 30:687–696

    Article  Google Scholar 

  • Currah L, Proctor FJ (1990) Onions in tropical regions. Bulletin No. 35 Natural Resources Inst., Chatham

  • D’Ennequin MLT, Panaud O, Robert T, Ricroch A (1997) Assessment of genetic relationships among sexual and asexual forms of Allium cepa using morphological traits and RAPD markers. Heredity 78:403–409

    Article  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24:796–802

    PubMed  CAS  Google Scholar 

  • Fischer D, Bachmann K (2000) Onion microsatellites for germplasm anlysis and their use in assessing intra- and interspecific relatedness within the subgenus Rhizirideum. Theor Appl Genet 101:153–164

    Article  CAS  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J, Team TG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed  Google Scholar 

  • Jakše J, Martin W, McCallum J, Havey MJ (2005) Single nucleotide polymorphisms, indels, and simple sequence repeats for onion cultivar identification. J Am Soc Hort Sci 130:912–917

    Google Scholar 

  • Jakše J, Meyer JDF, Suzuki G, McCallum J, Cheung F, Town CD, Havey MJ (2008) Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genomics 280:287–292

    Article  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  Google Scholar 

  • Jones HA, Clarke AE (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Am Soc Hort Sci 43:189–194

    Google Scholar 

  • Khar A, Lawande K, Negi K (2011) Microsatellite marker based analysis of genetic diversity in short day tropical Indian onion and cross amplification in related Allium spp. Genet Res Crop Evol 58(5):741–752

    Article  Google Scholar 

  • King JJ, Bradeen JM, Bark O, McCallum JA, Havey MJ (1998a) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • King JJ, Bradeen JM, Havey MJ (1998b) Variability for restriction fragment-length polymorphisms (RFLPs) and relationships among elite commercial inbred and virtual hybrid onion populations. J Am Soc Hort Sci 123:1034–1037

    CAS  Google Scholar 

  • Kisha TJ, Cramer CS (2011) Determining redundancy of short-day onion accessions in a germplasm collection using microsatellite and targeted region amplified polymorphic markers. J Am Soc Hort Sci 136:129–134

    CAS  Google Scholar 

  • Martin W, McCallum J, Shigyo M, Jakse J, Kuhl J, Yamane N, Pither-Joyce M, Gokce A, Sink K, Town C, Havey M (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genomics 274:197–204

    Article  PubMed  CAS  Google Scholar 

  • McCallum J (2007) Onion. In: Kole C (ed) Vegetables. Genome mapping and molecular breeding in plants, vol 5. Springer, New York, pp 331–347. http://www.springerlink.com/content/ug8w2376605272j8

    Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey M (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  PubMed  CAS  Google Scholar 

  • McCallum J, Thomson S, Pither-Joyce M, Kenel F, Clarke A, Havey M (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag-simple sequence repeat markers. J Am Soc Hort Sci 133:810–818

    Google Scholar 

  • Meer QPVD, Bennekom JL (1972) Influence of the environment on the percentage of self-fertilisation in onions and some consequences for breeding. Euphytica 21:450–453

    Article  Google Scholar 

  • Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403

    Article  PubMed  Google Scholar 

  • Merry DME (1967) Years of care and selection produced the noted Pukekohe onion. NZ J Ag 114:46–49

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Munger HM, Walters T (1992) Onion inbreds released from Cornell University. Allium Improv Newsl 2:53

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Peffley EB, Orozco-Castillo C (1987) Polymorphism of isozymes within plant introductions of Allium cepa L. and A. fistulosum L. HortScience 22:956–957

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Robinson AJ, Love CG, Batley J, Barker G, Edwards D (2004) Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 20:1475

    Article  PubMed  CAS  Google Scholar 

  • Rouamba A, Ricroch A, Sandmeier M, Robert T, Sarr A (1994) Evaluation of genetic resources of onion (Allium cepa L.) in West Africa. Acta Hort 358:173–179

    Google Scholar 

  • Rouamba A, Sandmeier M, Sarr A, Ricroch A (2001) Allozyme variation within and among populations of onion (Allium cepa L.) from West Africa. Theor Appl Genet 103:855–861

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M (2002) The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A. Wakegi. Chromosoma 11(3):184–191

    Article  Google Scholar 

  • Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) Vegetables II. Handbook of plant breeding. Springer, New York, pp 121–159

    Google Scholar 

  • Shinde D, Lai Y, Sun F, Arnheim N (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res 31:974–980

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Tsukazaki H, K-I Yamashita, Yaguchi S, Masuzaki S, Fukuoka H, Yonemaru J, Kanamori H, Kono I, Hang T, Shigyo M, Kojima A, Wako T (2008) Construction of SSR-based chromosome map in bunching onion (Allium fistulosum). Theor Appl Genet 117(8):1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Tsukazaki H, Honjo M, Yamashita K, Ohara T, Kojima A, Ohsawa R, Wako T (2010) Classification and identification of bunching onion (Allium fistulosum) varieties based on SSR markers. Breed Sci 60(2):139–152

    Article  Google Scholar 

  • van der Meer Q, de Vries J (1990) An interspecific cross between Allium roylei Stearn and Allium cepa L., and its backcross to A. cepa. Euphytica 47:29–31

    Article  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504

    Article  CAS  Google Scholar 

  • Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695

    Article  PubMed  CAS  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo M, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer 3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge provision of germplasm by the Warwick HRI Genetic Resources Unit (GRU) and Cornell University. We acknowledge Enza Zaden NZ Ltd. and Seminis NZ for field trialling support. We also acknowledge Richard Newcombe and David Chagne for helpful comments on the manuscript. This research was funded by the New Zealand Ministry of Science and Innovation Contract C02X0803. Development of Galaxy tools was carried out under BeSTGRID (Broadband enabled Science and Technology GRID) Summer of eResearch project supervised by Stuart Charters (Lincoln University). We thank Vladimir Mencl (University of Canterbury) for providing Galaxy hosting during development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McCallum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2012_9727_MOESM1_ESM.xls

List of Allium germplasm used at the described stages of this study, including the origin (where known), type (OP = open pollinated), description and citations. Where the collection latitude is unknown the day length adaptation is given as short (SD), intermediate (ID) or long day (LD), where known. (XLS 33 kb)

11032_2012_9727_MOESM2_ESM.xls

List of the SSR markers assessed in this study including primer sequences without the Tag or PIG tail sequences and a summary of the amplification results. The product sizes of amplicons from Allium cepa, A. roylei and A. fistulosum are based on sizing of the fluorescent products assessed using the ABI3130xl Genetic Analyser (Applied Biosystems Inc). Zeroes in product sizes denote no amplification and blanks indicate markers that were multi-locus based on agarose gel electrophoresis and were not screened further. (XLS 89 kb)

Screenshot of a simple Galaxy pipeline using MISA tools for SSR identification and flanking primer design. (PNG 188 kb)

11032_2012_9727_MOESM4_ESM.tif

Map showing the origins of each population tested and which of the 11 groups each population was assigned to, based on the clustering by discriminant analysis. (TIFF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, S., Pither-Joyce, M., Wright, K. et al. Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol Breeding 30, 1401–1411 (2012). https://doi.org/10.1007/s11032-012-9727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9727-6

Keywords

Navigation