Skip to main content
Log in

In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Mapping quantitative trait loci (QTLs) is a foundation for molecular marker-assisted selection and map-based gene cloning. During the past decade, numerous QTLs for seed yield (SY) and yield-related traits in Brassica napus L. have been identified. However, integration of these results in order to compare QTLs from different mapping populations has not been undertaken, due to the lack of common molecular markers between studies. Using previously reported Brassica rapa and Brassica oleracea genome sequences, we carried out in silico integration of 1,960 QTLs associated with 13 SY and yield-related traits from 15 B. napus mapping experiments over the last decade. A total of 736 SY and yield-related QTLs were mapped onto 283 loci in the A and C genomes of B. napus. These QTLs were unevenly distributed across the 19 B. napus chromosomes, with the most on chromosome A3 and the least on chromosome C6. Our integrated QTL map identified 142 loci where the conserved QTLs were detected and 25 multifunctional loci, mostly for the traits of flowering time (FT), plant height, 1,000-seed weight, maturity time and SY. These conserved QTLs and multifunctional loci may result from pleiotropism or clustered genes. At the same time, a total of 146 genes underlying the QTLs for FT and other yield-related traits were identified by comparative mapping with the Arabidopsis genome. These results facilitate the retrieval of B. napus SY and yield-related QTLs for research communities, increase the density of targeted QTL-linked markers, validate the existence of QTLs across different populations, and advance the fine mapping of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120(2):271–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A High density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7(9):e45739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153(2):949–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai G, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13(1):105–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12(1):12–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168(4):2169–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115(6):849–858

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami J-F, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113(7):1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14(1):120–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards C, Weinig C (2010) The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings. Heredity 106(4):661–677

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121(7):1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193(1):96–108

    Article  CAS  PubMed  Google Scholar 

  • Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci USA 106(17):7251–7256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155(1):463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29(1):159–171

    Article  Google Scholar 

  • Gulick PGP, Hatakeyama KHK, Horisaki AHA, Niikura SNS, Narusaka YNY, Abe HAH, Yoshiaki HYH, Ishida MIM, Fukuoka HFH, Matsumoto SMS (2010) Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L. Genome 53(4):257–265

    Article  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114(3):569–584

    Article  CAS  PubMed  Google Scholar 

  • He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16(5):618–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107(5):806–813

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Ono K, Kashiwagi T (2004) Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta 218(3):388–395

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations. Crop Sci 43(3):829–834

    Article  CAS  Google Scholar 

  • Kaur S, Cogan N, Ye G, Baillie R, Hand M, Ling A, Mcgearey A, Kaur J, Hopkins C, Todorovic M (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet 120(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Lanaud C, Fouet O, Clément D, Boccara M, Risterucci A, Surujdeo-Maharaj S, Legavre T, Argout X (2009) A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24(4):361–374

    Article  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34(4):543–552

    Article  CAS  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61(5):1419–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin WH, Kussell E (2012) Evolutionary pressures on simple sequence repeats in prokaryotic coding regions. Nucleic Acids Res 40(6):2399–2413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103(4):491–507

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177(4):2433–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189(3):1093–1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mace E, Rami JF, Bouchet S, Klein P, Klein R, Kilian A, Wenzl P, Xia L, Halloran K, Jordan D (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DArT) markers. BMC Plant Biol 9(1):13

    Article  PubMed Central  PubMed  Google Scholar 

  • Manzanares-Dauleux M, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101(5):885–891

    Article  CAS  Google Scholar 

  • Mei D, Wang H, Hu Q, Li Y, Xu Y, Li Y (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128(5):458–465

    Article  Google Scholar 

  • Milczarski P, Bolibok-Brągoszewska H, Myśków B, Stojałowski S, Heller-Uszyńska K, Góralska M, Brągoszewski P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2011) A high density consensus map of Rye (Secale cereale L.) based on dart markers. PLoS One 6(12):e28495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97(2):942–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD (2009) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106(43):18159–18164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4(3):238–249

    Article  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Oh S, Zhang H, Ludwig P, Van Nocker S (2004) A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16(11):2940–2953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parkin I, Lydiate D (1997) Conserved patterns of chromosome pairing and recombination in Brassica napus crosses. Genome 40(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Pilet M, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41(1):197–205

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111(8):1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39(2):379–394

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113(3):549–561

    Article  CAS  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179(3):1547–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126(1):119–132

    Article  CAS  PubMed  Google Scholar 

  • Rygulla W, Snowdon R, Friedt W, Happstadius I, Cheung W, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Phytopathology 98(2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133(2):251–261

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher TST, Suwabe KSK, Morgan CMC, Bancroft IBI (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51(3):169–176

    Article  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11(3):445–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97(7):3753–3758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182(3):851–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Li R, Zou J, Long Y, Meng J (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS One 6(7):e21645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2012) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 12(2):381–389

    Google Scholar 

  • Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One 8(1):e54559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shutu X, Dalong Z, Ye C, Yi Z, Shah T, Ali F, Qing L, Zhigang L, Weidong W, Jiansheng L (2012) Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biol 12(1):201–214

    Article  PubMed Central  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169(2):967–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113(4):597–609

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90(2):194–204

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129(2):455–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Guan CY (2010) Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brassica napus L.). Hereditas 32(3):271–277

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9(1):271–283

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011a) Integration of linkage maps for the amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12(1):101–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Chris Pires J, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinform 8(2):381–394

    Article  PubMed  Google Scholar 

  • Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124(1):153–161

    Article  PubMed  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116(5):613–622

    Article  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339(1):97–111

    Article  CAS  Google Scholar 

  • Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125(2):285–296

    Article  PubMed  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122(1):21–31

    Article  PubMed  Google Scholar 

  • Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125(4):695–705

    Article  CAS  PubMed  Google Scholar 

  • Zhao JY, Becker H, Ding HD, Zhang YF, Zhang DQ, Ecke W (2005) QTL of three agronomically important traits and their interactions with environment in a European × Chinese rapeseed population. J Genet Genomics 32(9):969–978

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science Foundation of China (Code: 31260335), Research Fund for the Doctoral Program of Higher Education of China (Code: 20123603120002) and Natural Science Foundation of Jiangxi province of China (Code: 20122BAB214018). A.S.M. is supported by an Australian Research Council Early Career Researcher Award (DE120100668).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Huang.

Additional information

Qing-Hong Zhou and Dong-Hui Fu have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, QH., Fu, DH., Mason, A.S. et al. In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus . Mol Breeding 33, 881–894 (2014). https://doi.org/10.1007/s11032-013-0002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-0002-2

Keywords

Navigation