Skip to main content
Log in

Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

One putative quantitative trait locus (QTL) for seeds per silique (SS), cqSS.A8, was identified using a double haploid (DH) population in Brassica napus, and near-isogenic lines (NILs; BC3F1) for cqSS.A8 were developed. However, the flanking markers from cqSS.A8 showed no significant difference using single-marker analysis, even though the frequency distribution of SS in the BC3F1 was bimodal, suggesting that one novel locus existed. In this study, we characterized the effects of this locus in the NILs and used a published linkage map to determine its location. A three-step approach was designed for mapping the locus in the NILs (BC3F2): (1) determining the individual BC3F2 genotype at the locus using a progeny test; (2) identifying amplified fragment length polymorphism (AFLP) markers linked to the locus using a combination of AFLP and bulked segregant analysis; and (3) determining the location and effects of this locus. QTL analysis in the BC3F2 revealed that this locus explained 85.8 and 55.7 % of phenotypic variance for SS and SL, respectively. Its additive and dominant effects on SS were 6.1 and 5.7, respectively. The locus was validated using a DH population by composite interval mapping and located to linkage group C9 (designated as qSS.C9). Mapping qSS.C9 was undertaken using 230 extremely low-SS plants of a BC4F1 population containing 807 plants. We found that qSS.C9 delimited a 1.005-Mb interval including 218 predicted genes in the reference Brassica rapa (Chiifu-401). These results will greatly facilitate map-based cloning of qSS.C9 and seed yield improvement in rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

CB-NILs:

Consecutive backcrossing near-isogenic lines

DH:

Double haploid

HIF-NILs:

Heterogeneous inbred family near-isogenic lines

LOD:

Logarithm of odds score

NIL:

Near-isogenic line

QTL:

Quantitative trait locus

SCAR:

Sequence characterized amplified region

SSR:

Simple sequence repeats

SS :

Seeds per silique

SL :

Silique length

SW :

1,000-seed weight

TP-MBS:

Trait performance and marker-assisted background selection

TP-NILs:

Trait performance near-isogenic lines

References

  • Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2, a major QTL controlling fruit weight, is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 209:741–745

    Article  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:3376–3383

    Article  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    Article  PubMed  CAS  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 37:231–240

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  PubMed  CAS  Google Scholar 

  • Fu TD (2004) The present and future of rapeseed quality improvement. J Huazhong Agric Univ 34:1–4

    Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  • He JP, Ke LP, Hong DF, Xie YZ, Wang GC, Liu PW, Yang GS (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18

    Article  PubMed  CAS  Google Scholar 

  • Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K (2010) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed 28:585–596

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Constructing genetics maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical Report. Whitehead Institute, Cambridge

  • Liu H (1987) Practical cultivation of rapeseed, 1st edn. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  • Liu SB, Zhou RG, Dong YC, Li P, Jia JZ (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  PubMed  CAS  Google Scholar 

  • Lu GY, Yang GS, Fu TD (2004) Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breed 123:262–265

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M (1997) Report on QTL nomenclature. Rice Genet News 14:11–13

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Nat Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • Piquemal J, Cinquin E, Couton F (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:192–203

    Google Scholar 

  • Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629

    Article  PubMed  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011a) Integration of linkage maps for the amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Xie YZ, Hong DF, Xu ZH, Liu PW, Yang GS (2008) Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed 127:145–149

    Article  CAS  Google Scholar 

  • Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang QF (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King GJ, Wu J, Liu K (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 11:594–609

    Article  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J, Fu T (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Y, Luo L, Xu C, Zhang Q, Xing Y (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Liu P, Hong D, Yang G (2008) Genetic analysis of seed number per pod in Brassica napus using augmented North Carolina (NC) II. Genes Genomic 30:197–204

    Google Scholar 

  • Zhang L, Liu P, Hong D, Huang A, Li S, He Q, Yang G (2010) Inheritance of seeds per silique in Brassica napus L. using joint segregation analysis. Field Crop Res 116:58–67

    Article  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was sponsored by funds from China Postdoctoral Science Foundation (No. 2010048091), the National Natural Science Foundation of China (No. 31100883), and the National High Technology Research and Development Program of China (863 Program; No. 2011AA10A104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Yang.

Additional information

Communicated by C. Quiros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Li, S., Chen, L. et al. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L.. Theor Appl Genet 125, 695–705 (2012). https://doi.org/10.1007/s00122-012-1861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1861-3

Keywords

Navigation