Skip to main content
Log in

Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Retrotransposons constitute a major proportion of the Triticeae genomes. Genome-scale studies have revealed their role in evolution affecting both genome structure and function and their potential for the development of novel markers. In this study, family members of an LTR copia retrotransposon which mediated the duplication of the gene encoding the high molecular weight glutenin subunit Bx7 in cultivar Glenlea were characterized. This novel element was named Sasanda_EU157184-1 (TREP3516). High density filters of the Glenlea hexaploid wheat BAC library were screened with a Sasanda long terminal repeat (LTR)-specific probe and ~1,075 positive clones representing an estimated copy number of 347 elements per haploid genome were identified. The 242 BAC clones with the strongest hybridization signal were selected. To maximize isolation of complete elements, this subset of clones was screened with a reverse transcriptase (RT) domain probe and DNA was isolated from the 133 clones that produced a strong hybridization signal. Left (5′) and right (3′) LTRs as well as the RT domains were PCR amplified and sequencing was carried out on the final subset of 121 clones. Evolutionary relationships were inferred from a data set consisting of 100 RT, 102 5′ LTR and 100 3′ LTR sequences representing 233, 451 and 495 informative sites for comparison, respectively. Neighbour-joining tree indicated that the element is at least 1.8 million years old and has evolved into a minimum of five sub-families. The insertion times of the 89 complete elements were estimated based on the divergence between their LTRs. Corroborating the inference from the RT domain, analysis of the LTR domains also indicated bursts of amplification from 2.6 million years ago (MYA) to now, except for one member dated to 4.6 ± 0.7 MYA, which corresponds to the interval of divergence of Triticum and Aegilops (3 MYA) and divergence of Triticum and Rye (7 MYA). In 44 elements, the 5′ and 3′ LTRs were identical indicating recent transposition activity. The element can be used to develop retrotransposon-based markers such as sequence-specific amplified polymorphism, retrotransposon microsatellite amplified polymorphism and inter-retrotransposon amplified polymorphism, all of which are well suited for genotyping studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alix K, Ryder CD, Moore J, King GJ, Heslop-Harrison JSP (2005) The genome organization of retrotransposons in Brassica oleracea. Plant Mol Biol 59:839–851

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Ammiraju JSS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar S, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351

    Article  PubMed  CAS  Google Scholar 

  • Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, Egan D, Doohan FM (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114:927–937

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Bennet MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot (Lond) 76:113–176

    Article  Google Scholar 

  • Bennetzen JL (2000) Transposable element contribution to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Biemont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nature Rev Genet 4:216–224

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Tavare S, Doebley J (2005) Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol Biol Evol 22:2304–2312

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, Banks T, Nilmalgoda S (2005) Molecular understanding of wheat evolution at the Glu-B1 locus. In: Proceedings of the international conference on plant genomics and biotechnology: challenges and opportunities, Raipur, India, p 40

  • Devos K, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Dixit A, Ma KH, Yu JW, Cho EG, Park YJ (2006) Reverse transcriptase domain sequences from mungbean (Vigna radiata) LTR retrotransposons: sequence characterization and phylogenetic analysis. Plant Cell Rep 25:100–111

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. PNAS 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Giovanni MD, Cenci A, Janni M, D’Ovidio RA (2008) LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats. Theor Appl Genet 116:859–867

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225.1–225.6

    Article  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    Article  PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S (2007) Hemi-nested touchdown PCR combined with primer-template mismatch PCR for rapid isolation and sequencing of low molecular weight glutenin subunit gene family from a hexaploid wheat BAC library. BMC Genetics 8:18. doi:10.1186/1471-2156-8-18

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, McCouch SR, Wessler SR (2002) Dasheng: a recently amplified non autonomous long terminal repeat element that is a major component of pericentric regions in rice. Genetics 161:1293–1305

    PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  • Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE1 retrotransposon dynamics in response to sharp microclimate divergence. PNAS 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9:411–412

    Article  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AV (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1971) On the rate of molecular evolution. J Mol Evol 1:1–17

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82(Suppl A):45–55

    Article  CAS  Google Scholar 

  • Kukuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167

    Article  CAS  Google Scholar 

  • Lall IPS, Maneesha Upadhyaya KC (2002) Panzee, a copia-like retrotransposon from the grain legume, pigeonpea (Cajanus cajan L.). Mol Genet Genomics 267:271–280

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  PubMed  CAS  Google Scholar 

  • Lönnig WE, Saedler H (2002) Chromosome rearrangements and transposable elements. Annu Rev Genet 36:389–410

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labelling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. PNAS 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analysis of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Wessler SR (1998) Extreme structural heterogeneity among the members of a maize retrotransposon family. Genetics 150:1245–1256

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Tsunewaki K (1996) Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol Biol Evol 13:1384–1392

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Tsunewaki K (1999) Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol Biol Evol 16:208–216

    PubMed  CAS  Google Scholar 

  • McCarthy EM, Liu J, Lizhi G, McDonald JF (2002) Long terminal repeat retrotransposons of Oryza sativa. Genome Biol 3: research0053.1–0053.11

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 225:792–801

    Article  Google Scholar 

  • McClintock B (1987) The discovery and characterization of transposable elements: the collected papers of Barbara McClintock. Garland Publishing, New York, p 636

    Google Scholar 

  • Morgante M (2006) Plant genome organization and diversity: the year of the junk. Curr Opin Biotechnol 17:168–173

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Morton BR, Gaut BS, Clegg MT (1996) Evolution of alcohol dehydrogenase genes in the palm and grass families. PNAS 93:11735–11739

    Article  PubMed  CAS  Google Scholar 

  • Muehlbauer GJ, Bhau BS, Syed NH, Heinen S, Cho S, Marshall D, Pateyron S, Buisine N, Chalhoub B, Flavell AJ (2006) A hAT superfamily transposase recruited by the cereal genome. Mol Genet Genomics 275:553–563

    Article  PubMed  CAS  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Article  PubMed  CAS  Google Scholar 

  • Özdemir N, Cloutier S (2005) Expression analysis and physical mapping of low molecular weight glutenin loci in hexaploid wheat (Triticum aestivum L.). Genome 48:401–410

    Article  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetics diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Ragupathy R, Naeem HA, Reimer E, Lukow OM, Sapirstein HD, Cloutier S (2008) Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116:283–296

    Article  PubMed  CAS  Google Scholar 

  • Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA (2008) Reme1, a copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66:137–150

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodriguez M, O’Sullivan D, Donini P, Papa R, Chiapparino E, Leigh F, Attene G (2006) Integration of retrotransposons-based markers in a linkage map of barley. Mol Breed 17:173–184

    Article  CAS  Google Scholar 

  • Sabot F, Simon D, Bernard M (2004) Plant transposable elements, with an emphasis on grass species. Euphytica 139:227–247

    Article  CAS  Google Scholar 

  • Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheat. Genetica 128:439–447

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nature Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH (2007) Molecular markers to assess genetic diversity. Euphytica 158:313–321

    Article  CAS  Google Scholar 

  • Schulman AH, Kalendar RA (2005) A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet Genome Res 110:598–605

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. Bioinformatics 13:523–535

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman AH (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang YM, You-Zhi MA, Li LC, Xing-Guo YE (2005) Identification and characterization of reverse transcriptase domain of transcriptionally active retrotransposons in wheat genomes. J Integrative Plant Biol 47:604–612

    Article  CAS  Google Scholar 

  • Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination, and mosaic evolution of the barley bare-1 retrotransposon. J Mol Evol 61:275–291

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. PNAS 103:17638–17643

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20(4):528–540

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    Article  PubMed  CAS  Google Scholar 

  • Wawrzynski A, Ashfield T, Chen N, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Metcalf M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MS, Young ND, Innes RW (2008) Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol 148:1760–1771

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. PNAS 103:17600–17601

    Article  PubMed  CAS  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. PNAS 91:11792–11796

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-elF4E locus: recombination rearrangements and repeats. Plant J 41:184–194

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Huna-Van A, Bennetzen JL, Copy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. PNAS 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogeneity. In: Marsha M, Pullman B (eds) Horizons in biochemistry. Academic press, New York, pp 189–225

    Google Scholar 

Download references

Acknowledgments

We thank Elsa Reimer and Andrzej Walichnowski for technical assistance and Michael Shillinglaw for the figures. This research was supported by Agriculture and Agri-Food Canada Genomics Initiative. Raja Ragupathy was supported by the University of Manitoba Graduate Fellowship and Manitoba Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Cloutier.

Additional information

Communicated by M. Grandbastien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 781 kb)

Supplementary material 2 (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragupathy, R., Banks, T. & Cloutier, S. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Mol Genet Genomics 283, 255–271 (2010). https://doi.org/10.1007/s00438-009-0509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0509-8

Keywords

Navigation