Skip to main content
Log in

Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sequencing of a BAC clone encompassing the Glu-B1 locus in Glenlea, revealed a 10.3 Kb segmental duplication including the Bx7 gene and flanking an LTR retroelement. To better understand the evolution of this locus, two collections of wheat were surveyed. The first consisted of 96 diploid and tetraploid species accessions while the second consisted of 316 Triticum aestivum cultivars and landraces from 41 countries. The genotypes were first characterized by SDS-PAGE and a total of 40 of the 316 T. aestivum accessions were found to display the overexpressed Bx7 phenotype (Bx7OE). Three lines from the 96 diploid/tetraploid collection also displayed the stronger intensity staining characteristic of the Bx7OE subunit. The relative amounts of the Bx7 subunit to total HMW-GS were quantified by RP-HPLC for all Bx7OE accessions and a number of checks. The entire collection was assessed for the presence of four DNA markers namely an 18 bp indel of the coding region of Bx7 variant alleles, a 43 bp indel of the 5′-region and the left and right junctions of the LTR retrotransposon borders and the duplicated segment. All 43 accessions found to have the Bx7OE subunit by SDS-PAGE and RP-HPLC produced the four diagnostic PCR amplicons. None of the lines without the Bx7OE had the LTR retroelement/duplication genomic structure. However, the 18 and 43 bp indel were found in accessions other than Bx7OE. These results indicate that the overexpression of the Bx7 HMW-GS is likely the result of a single event, i.e., a gene duplication at the Glu-B1 locus mediated by the insertion of a retroelement. Also, the 18 and 43 bp indels pre-date the duplication event. Allelic variants Bx7*, Bx7 with and without 43 bp insert and Bx7 OE were found in both tetraploid and hexaploid collections and shared the same genomic organization. Though the possibility of introgression from T. aestivum to T. turgidum cannot be ruled out, the three structural genomic changes of the B-genome taken together support the hypothesis of multiple polyploidization events involving different tetraploid progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat. Genome 42:296–307

    Article  PubMed  CAS  Google Scholar 

  • Anderson OD, Greene FC (1989) The characterization and comparative analysis of HMW glutenin genes from genomes A and B of hexaploid wheat. Theor Appl Genet 77:689–700

    Article  CAS  Google Scholar 

  • Anderson OD, Rausch C, Moullet O, Lagudah ES (2003) The wheat D genome HMW glutenin loci: BAC sequencing, gene distribution and retrotransposon clusters. Funct Integr Genomics 3:56–68

    PubMed  CAS  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Develop 15:621–627

    Article  CAS  Google Scholar 

  • Bushuk W (1998) Wheat breeding for end-product use. Euphytica 100:137–145

    Article  Google Scholar 

  • Butow BJ, Gras PW, Haraszi R, Bekes F (2002) The effects of different salts on mixing and extension parameters on a diverse group of wheat cultivars using 2g mixographs and extensigraph methods. Cereal Chem 79:823–826

    Article  Google Scholar 

  • Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O, Morell MK, Bekes F (2003) Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high molecular weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet 107:1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Butow BJ, Gale KR, Ikea J, Juhasz A, Bedo Z, Tamas L, Gianibelli MC (2004) Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109:1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, Banks T, Nilmalgoda S (2005) Molecular understanding of wheat evolution at the Glu-B1 locus. In: Proceedings of the international conference on plant genomics and biotechnology: challenges and opportunities, Raipur, India, p 40

  • D’Ovidio R, Masci S, Porceddu E, Kasarda D (1997) Duplication of the high molecular weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar ‘Red River 68’. Plant Breed 116:525–531

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity, a key factor in the success of polyploidy wheat under domestication. Science 316:1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang H (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Hendry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding, 1st edn. Intercept, France, pp 3–56

    Google Scholar 

  • Gale KR (2005) Diagnostic DNA markers for quality traits in wheat. J Cereal Sci 41:181–192

    Article  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh, parallel rate differences at the plastid gene rbcL. PNAS 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an under appreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  PubMed  CAS  Google Scholar 

  • Gianibelli MC, Echaide M, Larroque OR, Carrillo JM, Dubcovsky J (2002) Biochemical and molecular characterization of Glu-1 loci in Argentinean wheat cultivars. Euphytica 128:61–73

    Article  CAS  Google Scholar 

  • Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien M (1992) Retroelements in higher plants. Trends Genet 8:103–108

    PubMed  CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • Gu YG, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B (2006) Types and rates of sequence evolution at the high-molecular weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Forde J, Anderson OD, Greene FC, Shewry PR (1987) The nucleotide and deduced amino acid sequence of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosome 1A and 1D. Theor Appl Genet 75:117–126

    Article  CAS  Google Scholar 

  • Huang S, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. PNAS 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Isidore E, Scherrer B, Chalhoub, Feuillet C, Keller B (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–536

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao S, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Juhasz A, Larroque OR, Tamas L, Hsam SLK, Zeller FJ, Bekes F, Bedo Z (2003) Bankuti 1201-an old Hungarian wheat variety with special storage protein composition. Theor Appl Genet 107:697–704

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kong XY, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lukow OM, Payne PI, Tkachuk R (1989) The HMW Glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. J Sci Food Agric 46:451–260

    Article  CAS  Google Scholar 

  • Lukow OM, Forsyth SA, Payne PI (1992) Over-production of HMW glutenin subunits coded on chromosome 1B in common wheat, Triticum aestivum. J Genet Breed 46:187–192

    CAS  Google Scholar 

  • Lukow OM, Preston KR, Watts BM, Malcolmson LJ, Cloutier S (2002) Measuring the influence of wheat protein in bread making: From damage control to genetic manipulation of protein composition in wheat. In: Ng PKW, Wrigley CW (eds) Wheat quality elucidation-The Bushuk legacy. 1st edn. American Association of Cereal Chemists, Inc., St Paul, pp 50–64

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51–60

    Article  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analysis of LTR-retrotransposon structures reveals recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Mackie AM, Sharp PJ, Lagudah ES (1996) The nucleotide and derived amino acid sequence of a HMW Glutenin gene from Triticum tauschii and comparison with those from the D genome of bread wheat. J Cereal Sci 24:73–78

    Article  CAS  Google Scholar 

  • Marchylo BA, Lukow OM, Kruger JE (1992) Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J Cereal Sci 15:29–37

    CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in Maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Naeem HA, Sapirstein HD (2007) Ultra-fast separation of wheat glutenin subunits by reversed-phase HPLC using a superficially porous silica-based column. J Cereal Sci 46:157–168

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Law CN (1981) Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theor Appl Genet 60:229–236

    Article  CAS  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1,Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Ann Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Radovanovic N, Cloutier S, Brown D, Humphreys DG, Lukow OM (2002) Genetic variance for gluten strength contributed by high molecular weight glutenin proteins. Cereal Chem 79:843–849

    Article  CAS  Google Scholar 

  • Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breeding 12:51–59

    Article  CAS  Google Scholar 

  • Rakszegi M, Bekes F, Lang L, Tamas L, Shewry PR, Bedo Z (2005) Technological quality of transgenic wheat expressing an increased amount of HMW glutenin subunit. J Cereal Sci 42:15–23

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in Maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    CAS  Google Scholar 

  • Shewry PR, Gilbert SM, Savage AWJ, Tatham AS, Wan YF, Belton PS, Wellner N, D’Ovidio R, Bekes F, Halford NG (2003) Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theor Appl Genet 106:744–750

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PL (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–351

    Article  PubMed  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterization of wheat genome by reassociation kinetics. Chromososma 50:223–242

    CAS  Google Scholar 

  • Sutton KH (1991) Quantitative and qualitative variation among high molecular weight subunits of glutenin detected by reversed phase high performance liquid chromatography. J Cereal Sci 14:25–34

    Article  CAS  Google Scholar 

  • Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low copy DNA. Genome 41:402–407

    Article  CAS  Google Scholar 

  • Vawser MJ, Cornish GB (2004) Overexpression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum). Austral J Agric Res 55:577–588

    Article  CAS  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origin of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic Genome Res 110:91–107

    Article  CAS  Google Scholar 

  • Weegels PL, Van de Pijpekamp AM, Graveland A, Hamer RJ, Schofield JD (1996) Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci 23:103–111

    Article  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Wrigley CW (1996) Giant proteins with flour power. Nature 381:738–739

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Eco Evol 18:292–298

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Dallas Kessler, PGRC (Canada), Harold Bockelman, USDA-NSGC (USA), CIMMYT (Mexico), RICP (Czech Rep.) and AWCC (Australia), Dr. George Fedak and Dr. Gavin Humphreys of AAFC (Canada) for kindly providing the seeds used in the study. Prof. Gary Fulcher and Andrzej Walichnowski are acknowledged for suggestions and manuscript review. We are thankful to Andrzej Walichnowski, Natasa Radovanovic, Kathy Adams and Malgorzata Prochownik for technical assistance, Mike Shillinglaw for graphic support and Joanne Schiavoni for manuscript preparation. Financial assistance from the University of Manitoba Graduate Fellowship for Raja Ragupathy is acknowledged. This research was funded under the Canadian Crop Genomics Initiative. This publication is Agriculture and Agri-Food Canada contribution #1955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Cloutier.

Additional information

Communicated by J. W. Snape.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (XLS 89.5 KB)

ESM2 (XLS 22.0 KB)

ESM3 (TIF 1.47 MB)

ESM4 (TIF 1.16 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragupathy, R., Naeem, H.A., Reimer, E. et al. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116, 283–296 (2008). https://doi.org/10.1007/s00122-007-0666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0666-2

Keywords

Navigation