Skip to main content
Log in

Morgane, a new LTR retrotransposon group, and its subfamilies in wheats

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable elements are the main components of grass genomes, especially in Triticeae species. In a previous analysis, we identified a very short element, Morgane_CR626934-1; here we describe more precisely this unusual element. Morgane_CR626934-1 shows high sequence identity (until 98%) with ESTs belonging to other possible small elements, expressed under abiotic and biotic stress conditions. No putative functional polyprotein could be identified in all of these different Morgane-like sequences. Moreover, elements from the Morgane_CR626934-1 subfamily are found only in wheats and Agropyrum genomes and among these species, only Ae. tauschii and T. aestivum present a high copy number of these elements. They are highly conserved in wheat genomes (95.5%). Based on the uncommon characteristics of the described Morgane-like elements, we proposed to classify them in a new group within the Class I LTR retrotransposon, the Morgane group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

Expressed Sequence Tag

LTR:

Long Terminal Repeat

TE:

Transposable Element

TRIM:

Terminal Repeats in Miniature

LARD:

LArge Retrotransposon Derivative

References

  • Bendich AJ, McCarthy BJ (1970) DNA comparisons among barley, oats, rye, and wheat. Genetics 65:545–565

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol Genet and Genomics 271:377–386

    Article  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Sourdille P, Joudrier P, Gautier M-F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the Hardness, Ha. locus in diploid and polyploidy wheat species, Triticum and Aegilops. Plant Cell 17:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB, Rimpau J, Smith DB (1977) Repeated sequence DNA relationship in four cereals genomes. Chromosoma 63:205–222

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Huang X, Miller W (1991) A Time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Article  Google Scholar 

  • Jurka J (1998) Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol 8:333–337

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) LArge Retrotransposon Derivatives: Abundant, conserved but non-autonomous retroelements of Barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367

    Article  PubMed  CAS  Google Scholar 

  • Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien M-A (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28:159–168

    Article  PubMed  CAS  Google Scholar 

  • Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien M-A (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266

    Article  PubMed  CAS  Google Scholar 

  • Murigneux A, Barloy D, Leroy P, Beckert M (1993) Molecular and␣morphological evaluation of doubled haploid lines in maize. 1 – Homogeneity within DH lines. Theor Appl Genet 86:837–842

    Article  CAS  Google Scholar 

  • Sabot F., Guyot R., Wicker T., Chantret N., Salse J., Laubin B., Leroy P., Sourdille P, Chalhoub B, Bernard M (2005a) Updating transposable elements annotations from large wheat genomic sequences reveals diverse activities and gene association of elements. Mol Genet Genomics 274:119–132

    Article  CAS  Google Scholar 

  • Sabot F, Sourdille P, Bernard M (2005b) Advent of a new retrotransposon structure: the long form of the Veju elements. Genetica 125:325–335

    Article  CAS  Google Scholar 

  • Sabot F, Simon D, Bernard M (2004) Plant transposable elements, with an emphasis on grass species. Euphytica 137:227–247

    Article  Google Scholar 

  • Sambrook J, Russel A (2001) Molecular cloning a laboratory manual. Cold Spring Harbor: Laboratory Press, Cold Spring Harbor, New York

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyljasmonate. Plant Mol Biol 36: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a 211 kb sequence in diploid wheat, Triticum monococcum L. reveals multiple mechanisms of genome evolution. Plant J 26: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562

    Article  CAS  Google Scholar 

  • Witte C-P, Le QH, Bureau TE, Kumar A (2001) Terminal-repeat retrotransposons in miniature, TRIM. are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bernard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabot, F., Sourdille, P., Chantret, N. et al. Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128, 439–447 (2006). https://doi.org/10.1007/s10709-006-7725-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-7725-5

Keywords

Navigation