Skip to main content

Advertisement

Log in

Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

BARE-1 is a highly abundant, copia-like, LTR (long terminal repeat) retrotransposon in the genus Hordeum. The LTRs provide the promoter, terminator, and polyadenylation signals necessary for the replicational life cycle of retrotransposons. We have examined the variability and evolution of BARE-1-like elements, focusing on the LTRs. Three groups were found, corresponding to each of the Hordeum genome types analyzed, which predate the divergence of these types. The most variable LTR regions are tandem repeats near the 3′ end and the promoter. In barley (H. vulgare L.), two main classes of LTR promoters were defined, corresponding to BARE-1 and to a new class we call BARE-2. These can be considered as families within the group I BARE elements. Although less abundant in cultivated barley than is BARE-1, BARE-2 is transcriptionally active in leaves and calli. A sequenced BARE-2 has more than 99% similar LTRs and perfect terminal direct repeats (TDRs), indicating it is a recent insertion, but the coding region, especially gag, is disrupted by frameshifts and stop codons. BARE-2 appears to be a chimeric element resulting from retrotransposon recombination by strand switching during replication, with LTRs and 5′UTR more similar to BARE-1 and the rest more similar to Wis-2. We provide evidence as well for another form of recombination, where LTR-LTR recombination has generated tandem multimeric BARE-1 elements in which internal coding domains are interspersed with shared LTRs. The data indicate that recombination contributes to the complexity and plasticity of retroelement evolution in plant genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Beguiristain T, Grandbastien MA, Puigdoménech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–221

    PubMed  Google Scholar 

  • Bennetzen J (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Appl Biol 95:127–132

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    PubMed  Google Scholar 

  • Carpenter S, Alexandersen S, Long MJ, Perryman S, Chesebro B (1991) Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus. J Virol 65:1605–1610

    PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilus group. Proc Natl Acad Sci USA 100:3363–3368

    PubMed  Google Scholar 

  • Casacuberta JM, Grandbastien M-A (1993) Characterization of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res 21:2087–2093

    PubMed  Google Scholar 

  • Casacuberta JM, Vernhettes S, Grandbastien M-A (1995) Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J 14:2670–2678

    PubMed  Google Scholar 

  • Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML (1997) Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88:647–655

    PubMed  Google Scholar 

  • Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortin J, López-Galindez C, Pérez-Breña P, Villanueva N, Nájera R, VandePol S, Steinhauer D, DePolo N, Holland J (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance, a review. Gene 40:1–8

    Article  Google Scholar 

  • Dooner HK, Martínez-Ferez IM (1997) Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9:1633–1646

    PubMed  Google Scholar 

  • Feng YX, Moore SP, Garfinkel DJ, Rein A (2000) The genomic RNA in Ty1 virus-like particles is dimeric. J Virol 74:10819–10821

    PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: Where genetics meets genomics. Nat Rev Genet 3:329–341

    PubMed  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270

    PubMed  Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: Fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    PubMed  Google Scholar 

  • Gabus C, Ficheux D, Rau M, Keith G, Sandmeyer S, Darlix JL (1998) The yeast Ty3 retrotransposon contains a 5′-3′ bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. EMBO J 17:4873–4880

    PubMed  Google Scholar 

  • García-Martínez J, Martínez-Izquierdo JA (2003) Study on the evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol 20:831–841

    PubMed  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    PubMed  Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    PubMed  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  Google Scholar 

  • Hu WS, Temin HM (1990) Genetic consequences of packaging two RNA genomes retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA 87:1556–1560

    PubMed  Google Scholar 

  • Jacobsen N, von Bothmer R (1992) Supraspecific groups in the genus Hordeum. Hereditas 116:21–24

    Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    PubMed  Google Scholar 

  • Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD, Dougherty JP (2000) High rate of recombination throughout the Human Immunodifficiency Virus Type 1 genome. J Virol 74:1234–1240

    PubMed  Google Scholar 

  • Jiang N, Jordan IK, Wessler SR (2002a) Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol 130:1697–1705

    Article  Google Scholar 

  • Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, McCouch SR, Wessler S (2002b) Dasheng: a recently amplified non-autonomous LTR element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305

    Google Scholar 

  • Jordan IK, McDonald JF (1998) Evidence for the role of recombination in the regulatory evolution of Saccharomyces cerevisiae Ty elements. J Mol Evol 47:14–20

    PubMed  Google Scholar 

  • Jordan IK, McDonald JF (1999) Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151:1341–1351

    PubMed  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) LARD retroelements: Conserved, non-autonomous components of barley and related genomes. Genetics 166:1437–1450

    PubMed  Google Scholar 

  • Kalmykova AI, Kwon DA, Rozovsky YM, Hueber N, Capy P, Maisonhaute C, Gvozdev VA (2004) Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol Biol Evol 21:2281–2289

    PubMed  Google Scholar 

  • Kankaanpää J, Mannonen L, Schulman AH (1996) The genome sizes of Hordeum species show considerable variation. Genome 39:730–735

    Google Scholar 

  • Ke N, Voytas DF (1997) High frequency cDNA recombination of the Saccharomyces retrotransposon Ty5: The LTR mediates formation of tandem elements. Genetics 147:545–556

    PubMed  Google Scholar 

  • Ke N, Voytas DF (1999) cDNA of the yeast retrotransposon Ty5 preferentially recombines with substrates in silent chromatin. Mol Cell Biol 19:484–494

    PubMed  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Kulguskin V, Ilyin YV, Georgiev GP (1981) Mobile dispersed genetic element MDG1 of Drosophila melanogaster: nucleotide sequence of long terminal repeats. Nucleic Acids Res 9:3451–3464

    PubMed  Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    PubMed  Google Scholar 

  • Lai MM (1995) The molecular biology of hepatitis delta virus. Annu Rev Biochem 64:259–286

    PubMed  Google Scholar 

  • Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W (1990) DNA sequence comparison of micropia transposable elements from Drosophila hydei and Drosophila melanogaster. Chromosoma 99:111–117

    PubMed  Google Scholar 

  • Lerat E, Capy P (1999) Retrotransposons and retroviruses: Analysis of the envelope gene. Mol Biol Evol 16:1198–1207

    PubMed  Google Scholar 

  • Lyubomirskaya NV, Arkhipova IR, Ilyin YV, Kim AI (1990) Molecular analysis of the gypsy (mdg4) retrotransposon in two Drosophila melanogaster strains differing by genetic instability. Mol Gen Genet 223:305–309

    PubMed  Google Scholar 

  • Ma J, Devos K, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal repent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    PubMed  Google Scholar 

  • Manninen I, Schulman AH (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846

    PubMed  Google Scholar 

  • Marr SF, Telesnitsky A (2003) Mismatch extension during strong stop strand transfer and minimal homology requirements for replicative template switching during Moloney murine leukemia virus replication. J Mol Biol 330:657–674

    PubMed  Google Scholar 

  • Matsuoka Y, Tsunewaki K (1996) Wheat retrotransposon families identified by reverse transcriptase domain analysis. Mol Biol Evol 13:1384–1392

    PubMed  Google Scholar 

  • Matyunina LV, Jordan IK, McDonald JF (1996) Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation. Proc Natl Acad Sci USA 93:7097–7102

    PubMed  Google Scholar 

  • Maury W, Perryman S, Oaks JL, Seid BK, Crawford T, McGuire T, Carpenter S (1997) Localized sequence heterogeneity in the long terminal repeats of in vivo isolates of equine infectious anemia virus. J Virol 71:4929–4937

    PubMed  Google Scholar 

  • McClure MA (1991) Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8:835–856

    PubMed  Google Scholar 

  • McDonald JF (1993) Evolution and consequences of transposable elements. Curr Opin Genet Dev 3:855–864

    PubMed  Google Scholar 

  • Mikkelsen JG, Pedersen FS (2000) Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 7:77–99

    PubMed  Google Scholar 

  • Mizrokhi LJ, Mazo AM (1990) Evidence for horizontal transmission of the mobile element jockey between distant Drosophila species. Proc Natl Acad Sci USA 87:9216–9220

    PubMed  Google Scholar 

  • Montano MA, Novitsky VA, Blackard JT, Cho NL, Katzenstein DA, Essex M (1997) Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. J Virol 71:8657–8665

    PubMed  Google Scholar 

  • Moumen A, Polomack L, Roques B, Buc H, Negroni M (2001) The HIV-1 repeated sequence R as a robust hot-spot for copy-choice recombination. Nucleic Acids Res 29:3814–3821

    PubMed  Google Scholar 

  • Mugnier N, Biémont C, Vieira C (2005) New regulatory regions of Drosophila 412 retrotransposable element generated by recombination. Mol Biol Evol:doi:10.1093/molbev/msi060

  • Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6:290–300

    PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: A tool for editing and annotating multiple sequence alignments. Distributed by the author (http://www.psc.edu/biomed/genedoc)

  • Nomomura K, Kurata N (2001) The centromere composition of multiple repetitive sequences on rice chromosome 5. Chromosoma 110:284–291

    PubMed  Google Scholar 

  • Panstruga R, Büschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062

    PubMed  Google Scholar 

  • Park Y-J, Dixit A, Yoo J-W, Bennetzen J (2004) Further evidence of microcolinearity between barley and rice genomes at orthologous regions. Mol Cells 17:492–502

    PubMed  Google Scholar 

  • Puchta H, Hohn B (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and the length of homologous overlap. Nucleic Acids Res 19:2693–2700

    PubMed  Google Scholar 

  • Rostocks N, Park YJ, Ramakrishna W, Ma J, Druka A, Shiloff BA, SanMiguel PJ, Jiang Z, Brueggeman R, Sandhu D, Gill K, Bennetzen JL, Kleinhofs A (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics 2:51–59

    PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    PubMed  Google Scholar 

  • Sharon G, Burkett TJ, Garfinkel DJ (1994) Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol 14:6540–6551

    PubMed  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    PubMed  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    PubMed  Google Scholar 

  • Suoniemi A, Schmidt D, Schulman AH (1997) BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica 100:219–230

    PubMed  Google Scholar 

  • Suoniemi A, Tanskanen J, Pentikäinen O, Johnson MS, Schulman AH (1998) The core domain of retrotransposon integrase in Hordeum: Predicted structure and evolution. Mol Biol Evol 15:1135–1144

    PubMed  Google Scholar 

  • Van de Peer Y, de Wacher R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    PubMed  Google Scholar 

  • Vernhettes S, Grandbastien M-A, Casacuberta JM (1998) The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol Biol Evol 15:827–836

    PubMed  Google Scholar 

  • Vicient CM, Schulman AH (2002) Copia-like retrotransposons in the rice genome: Few and assorted. Genome Lett 1:35–47

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    PubMed  Google Scholar 

  • Vicient CM, Jaskelainen M, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    PubMed  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. International Plant Genetic Resources, Rome

    Google Scholar 

  • Wei F, Wing RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14:1903–1917

    PubMed  Google Scholar 

  • Wilhelm M, Boutabout M, Heyman T, Wilhelm FX (1999) Reverse transcription of the yeast Ty1 retrotransposon: The mode of first strand transfer is either intermolecular or intramolecular. J Mol Biol 288:505–510

    PubMed  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    PubMed  Google Scholar 

  • Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H (2001) The rice retrotransposon Tois17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics 265:336–344

    PubMed  Google Scholar 

  • Yu H, Jetzt AE, Ron Y, Preston BD, Dougherty JP (1998) The nature of Human Immunodeficiency Virus Type 1 strand transfers. J Biol Chem 273:28384–28391

    PubMed  Google Scholar 

  • Zhang L, Pond SK, Gaut BS (2001) A survey of the molecular evolutionary dynamics of twenty-five multigene families from four grass taxa. J Mol Evol 52:144–156

    PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by projects 44404 and 47581 from the Academy of Finland. Anne-Mari Narvanto is thanked for her always excellent technical assistance. David Kudrna and Andris Kleinhofs (Washington State University) are thanked for their gift of the barley BAC analyzed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Schulman.

Additional information

[Reviewing Editor: Dr. Juergen Brosius]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicient, C.M., Kalendar, R. & Schulman, A.H. Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. J Mol Evol 61, 275–291 (2005). https://doi.org/10.1007/s00239-004-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0168-7

Keywords

Navigation