Skip to main content

Advertisement

Log in

Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

For the first time, numerous sequences of Copia and Gypsy retrotransposons from the Cucumis melo genome have been obtained and analyzed. Phylogenetic analyses of sequences of both types of long terminal repeat (LTR) retrotransposons were carried out. The melon genome contains approximately 20,000 Gypsy and 6,800 Copia elements, comprising about 26% of its total size. Starting from a retrotransposon fragment, we have cloned and characterized an entire melon retrotransposon, named Reme1, which is 5,149 bp long. Reme1 belongs to the Superfamily Copia retrotransposons by its protein domain order and sequence similarity to other Copia elements of dicotyledons. The haploid genome of melon (var. “Piel de Sapo”) contains about 120 copies of Reme1. Several copies of Reme1 are transcriptionally active, although at low levels, in melon leaves as analyzed by reverse-transcription PCR (RT-PCR) and sequencing. However, the transcript pool is considerably increased when melon leaves are treated with UV light, as has been seen for various retroelements in many organisms. The cDNAs of Reme1 transcripts showed less diversity than do Reme1 genomic sequences, suggesting that a subfamily of these elements is differentially responsive to UV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

bp:

Base pairs

Co:

Korean melon variety

EDTA:

Ethylene diamine tetra acetic acid

EF:

Elongation factor

INT/int :

Integrase

I-PCR:

Inverse PCR

Kb:

Kilobases

LTR:

Long terminal repeat

Mb:

Megabases

MES:

2-Morfolinoetansulfonic acid

ORF:

Open reading frame

PBS:

Primer binding site

PCR:

Polymerase chain reaction

PPT:

Polypurine tract

PS:

“Piel de Sapo” melon line

PSL:

Photo-stimulated luminescence

RT/rt:

Reverse transcriptase

RT-PCR:

Reverse-transcription PCR

SDS:

Sodium dodecyl sulphate

SINE:

Short interspersed nuclear elements

U:

Units

UV:

Ultraviolet light

References

  • Aledo R, Raz R, Monfort A, Vicient CM, Puigdomenech P, Martínez-Izquierdo JA (1995) Chromosome localization and characterization of a family of long interspersed repetitive DNA elements from the genus Zea. Theor Appl Genet 90:1094–1100

    Article  CAS  Google Scholar 

  • Araujo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys MA (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–219

    CAS  Google Scholar 

  • Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–221

    Article  PubMed  CAS  Google Scholar 

  • Bingham P, Zachar Z (1989) Retrotransposons and the FB transposon from Drosophila Melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 485–502

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw VA, McEntee K (1989) DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Vernhettes S, Grandbastien MA (1995) Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J 14:2670–2678

    PubMed  CAS  Google Scholar 

  • Charlesworth B (1986) Genetic divergence between transposable elements. Genet Res 48:111–118

    Article  PubMed  CAS  Google Scholar 

  • Echenique V, Stamova B, Wolters P, Lazo G, Carollo L, Dubcovsky J (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum Z, Livneh Z (1998) UV light induces IS10 transposition in Escherichia coli. Genetics 149:1173–1181

    PubMed  CAS  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Escarmis C, Lazaro E, Manrubia SC (2006) Population bottlenecks in quasispecies dynamics. Curr Top Microbiol Immunol 299:141–170

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992a) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Smith JB, Kumar A (1992b) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231:232–242

    Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188

    PubMed  CAS  Google Scholar 

  • García-Martínez J, Martínez-Izquierdo JA (2003) Study on the evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol 20:831–841

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Orte E (2002) Estudio del gen 23 del retrotransposon Grande de maíz. Ph.D. Dissertation, Barcelona University, Spain

  • Gomez E, Schulman AH, Martínez-Izquierdo JA, Vicient CM (2006) Integrase diversity and transcription of the maize retrotransposon Grande. Genome 49:558–562

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposon under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated via plant cell genetics. Nature 337:376–380

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Joshi CP (1987a) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP (1987b) Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res 15:9627–9640

    Article  PubMed  CAS  Google Scholar 

  • Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Boris Vyskot B (2006) Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Genet Genomics 276:254–263

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki HI, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Kumar A (1996) The adventures of the Ty1-copia group of retrotransposons in plants. Trends Genet 12:41–43

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16–20

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EM, Liu J, Lizhi G, McDonald JF (2002) Long terminal repeat retrotransposons of Oryza sativa. Genome Biol 3(10):research0053.1–research0053.11

    Article  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien MA (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28:159–168

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  PubMed  CAS  Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5:1630–1638

    PubMed  CAS  Google Scholar 

  • Neumann P, Pozarkova D, Macas J (2003) Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53:399–410

    Article  PubMed  CAS  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AL, Arroyo M, Gómez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison P, Kumar A, Flavell AJ, (1996a) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    PubMed  CAS  Google Scholar 

  • Pearce SR, Kumar A, Flavell AJ (1996b) Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep 15:949–953

    Article  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10:1911–1918

    PubMed  CAS  Google Scholar 

  • Rico-Cabanas L, Martinez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377

    Article  PubMed  CAS  Google Scholar 

  • Rudin CM, Thompson CB (2001) Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes Cancer 30:64–71

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei N (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 81:37–44

    Article  Google Scholar 

  • Shim S, Lee SK, Han JK (2000) A novel family of retrotransposons in Xenopus with a developmentally regulated expression. Genesis 26:198–207

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    Article  PubMed  CAS  Google Scholar 

  • Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: the BARE-2 retrotransposon as a parasite´s parasite. Gene 390:166–174

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, population-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tremousaygue D, Bardet C, Dabos P, Regad F, Pelese F, Nazer R, Gander E, Lescure B (1997) Genome DNA sequencing around the EF-1 alpha multigene locus of Arabidopsis thaliana indicates a high gene density and a shuffling of noncoding regions. Genome Res 7:198–209

    Article  PubMed  CAS  Google Scholar 

  • Turcich MP, Bokhari-Riza A, Hamilton DA, He C, Messier W, Stewart CB, Mascarenhas JP (1996) PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sex Plant Reprod 9:65–74

    Google Scholar 

  • Valerie K, Laster WS, Cheng L, Kirkham JC, Reavey P, Kuemmere NB (1996) Signal transduction and HIV transcriptional activation after exposure to ultraviolet light and other DNA-damaging agents. Photochem Photobiol 64:280–285

    PubMed  CAS  Google Scholar 

  • Van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microlinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718

    Article  PubMed  Google Scholar 

  • Van Leeuwen H, Garcia-Mas J, Coca M, Puigdomenech P, Monfort A (2005) Analysis of the melon genome in regions encompassing TIR-NBS-LRR resistance genes. Mol Genet Genomics 273:240–251

    Article  PubMed  CAS  Google Scholar 

  • Vernhettes S, Grandbastien MA, Casacuberta JM (1998) The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high plasticity of its regulatory sequences. Mol Biol Evol 15:827–836

    PubMed  CAS  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (1999) UV-B damage amplified by transposons in maize. Nature 397:398–399

    Article  PubMed  CAS  Google Scholar 

  • Warmington JR, Waring RB, Newlon CS, Indge KJ, Oliver SG (1985) Nucleotide sequence characterization of Ty 1-17, a class II transposons from yeast. Nucleic Acids Res 13:6679–6693

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell AJ, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genet 12. doi:10.1038/nrg2165

Download references

Acknowledgments

The authors are indebted to IRTA and Semillas Fitó for plant material and to IRTA for Southern blot membranes. We are grateful to Dr. Van Leeuwen for providing the melon BAC library, to Dr. A. Caño, A. Mascarell and D. Gonzalez-Ibeas (CSIC) for providing the primers sequences of a melon EF gene and functional information about it and to IBMB (CSIC) technicians for support, especially those from the sequencing service. E.R. was the recipient of a collaborative CSIC-industry Fellowship: CSIC-Semillas Fitó S.A., a contract from the Spanish Biotechnology National Plan (BIO99-1175), a travel grant from the ESF for a stay in the laboratory of A.H.S. where the work was supported by a grant from the Academy of Finland (project 53453), and a grant from Consorci CSIC-IRTA. Some funds for this study were provided by CERBA (Generalitat of Catalonia). This work was mainly supported by the grant BIO99-1175 (CICYT) from the MEC of Spanish Govern to J.A.M.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Martínez-Izquierdo.

Additional information

Accession Numbers of New Sequences

Cucumis melo Copia retrotransposons, putative reverse transcriptase (partial sequences): From AM182612 to AM182643, clones Cco26, 24, 43, 45, 22, 23, 8, 27, 32, 9, 31, 25, 33; Cps42, 25, 32, 23, 21, 38, 35, 1, 31, 3, 15, 33, 36, 37, 27, 24, 29, 22 and 26, respectively.

Retrotransposon Reme1 (complete sequence): AM1174993.

Cucumis melo Gypsy retrotransposons, reverse transcriptase (partial sequences): From AM182333 to AM182346, clones Gco9rt, 43, 25, 24, 8, 45, 18, 46; Cps1rt, 28, 29, 43, 3 and 46, respectively. Cucumis melo Gypsy retrotransposons, putative integrase (partial sequences): From AM182873 to AM182886, clones Gco9int, 25, 24, 8, 45, 46, 18, 43; Cps1int, 28, 29, 43, 3, and 46, respectively. Reme1retrotransposon elements (partial sequences): From AM228927 to AM228954, clones 5′UTR-1, 2, 4, 6, 9, 10, 11, 13; GAG-13, 5, 11, 1, 2, 10, 9, 14, 3, 6; INT-14, 1, 11, 7; RT-9, 15, 2, 3, 6 and 12, respectively. Reme1 retrotransposon elements, cDNAs (from RNAs) (partial sequences): From AM228981 to AM229008, clones RNA5′UTR-1.6, 2, 28, 29, 30, 31; RNAGAG-17, 18, 34, 1.5, 32, 35, 15, 16; RNA-INT-22, 23, 16, 17, 37, 40, 41, 25; RNA-RT-20, 22, 23, 24, 6 and 7, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramallo, E., Kalendar, R., Schulman, A.H. et al. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66, 137–150 (2008). https://doi.org/10.1007/s11103-007-9258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9258-4

Keywords

Navigation