Skip to main content
Log in

A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bancroft I, Dean C (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134:1221–1229

    PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Röder MS, Korzun V (2004) Extension of the Messapia × dicoccoides linkage map of Triticum turgidum (L). Thell Cell Mol Biol Lett 9:529–541

    CAS  Google Scholar 

  • Cenci A, Chantret N, Xy K, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) A half million clones bacterial artificial chromosome (BAC) library of durum wheat. Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917

    Article  PubMed  CAS  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004b) Characterization of the complex locus of Phaseolus vulgaris encoding polygalacturonase-inhibiting proteins (PGIPs) reveals sub-functionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  CAS  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004a) Polygalacturonases, polygalacturonase inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta 1696:237–244

    PubMed  CAS  Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F (2003) The crystal structure of PGIP (polygalacturonase-inhibiting protein), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA 100:10124–10128

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Gamboa A, Paez-Valencia J, Acevedo GF, Vazquez-Moreno L, Alvarez-Buylla RE (2001) Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun 288:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Lee B, Kim C, Yim J, Han J-J, Lee S, Kim S-R, An G (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–369

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Di Giovanni M, Roberti S, Capodicasa C, D’Ovidio R (2006) Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Jones JDG (1997) The roles of leucine rich repeats in plant defences. Adv Bot Res 24:90–167

    Google Scholar 

  • Keller J, Lim E, Dooner HK (1993) Preferential transposition ofAc to linked sites in Arabidopsis. Theor Appl Genet 86:585–588

    Article  CAS  Google Scholar 

  • Kemp G, Bergmann CW, Clay R, Van der Westhuizen AJ, Pretorius ZA (2003) Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Mol Plant Microbe Interact 16:955–961

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Salina E A (2001) Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. Plant Breed 120:227–232

    Article  CAS  Google Scholar 

  • Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, De Lorenzo G, Cervone F (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J 18:2352–2363

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Li Z (2002) The partial structure of wheat polygalacturonase-inhibiting protein. Zhongguo Shengwu Huaxue Yu Fenzi Shengwu Xuebao 18:197–201

    Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Sears E R (1966) Nullisomic-tetrasomic combination in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburg, pp 29–45

    Google Scholar 

  • Song W-Y, Pi L-Y, Wang G-L, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Tai T, Tanksley S (1991) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Wang G-L, Ruan D-L, Song W-Y, Sideris S, Chen L, Pi L-Y, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a Leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–780

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman A (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by MIUR [Ministero dell’Istruzione, dell’Università e della Ricerca; grants PRIN (Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale) 2005 and FISR (Fondo Integrativo Speciale per la Ricerca) 2005–2008]. We thank Profs. Domenico Lafiandra and Mario Augusto Pagnotta (Università della Tuscia, Viterbo, Italy) for providing seeds of some wheat accessions and cultivars and Dr. Thomas Wicker for assistance in estimating the insertion date of transposon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato D’Ovidio.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_719_MOESM1_ESM.doc

Table S1. Species analyzed and their accession number: PI, National Small Grains Collection, USDA-ARS, Aberdeen, ID, USA; MG, Istituto del Germoplasma, CNR, Bari, Italy; AW and ATRI, Zentralinstitut fur Genetik und kulturplanzen forschung, Gatersleben, Germany; ICWT, International Center for Agricultural Research in the Dry Areas (ICARDA); ID, Istituto Sperimentale per la Cerealicoltura, Lodi, Italy. Genotypes with different code were from researchers (see acknowledgements).(DOC 39 kb)

122_2008_719_MOESM2_ESM.doc

Table S2. Sequence accessions showing significant similarity with the Vacuna element found within the sixth LRR of the Tdipgip1a of the accession MG4343 of T. turgidum ssp. dicoccoides. (DOC 33 kb)

Fig7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giovanni, M., Cenci, A., Janni, M. et al. A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats. Theor Appl Genet 116, 859–867 (2008). https://doi.org/10.1007/s00122-008-0719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0719-1

Keywords

Navigation