Skip to main content
Log in

Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Despite inhibition of protein synthesis being its mode of action, the trichothecene mycotoxin deoxynivalenol (DON) induced accumulation of transcripts encoding translation elongation factor 1α (EF-1α), class III plant peroxidase (POX), structure specific recognition protein, basic leucine zipper protein transcription factor (bZIP), retrotransposon-like homologs and genes of unknown function in the roots of wheat cultivars CM82036 and Remus. Fusarium head blight (FHB) studies using Fusarium graminearum and its trichothecene-minus (Tri5 ) mutant derivative and adult plant DON tests showed that these transcripts were responsive to both mycotoxigenic- and non-mycotoxigenic-associated Fusarium stress. In tests using the parents ‘CM82036’, ‘Remus’ and 14 double-haploid progeny that segregated for quantitative trait locus (QTL) Fhb1 on chromosome 3BS (syn. Qfhs.ndsu-3BS) (from ‘CM82036’ that confers DON tolerance), bZIP expression was significantly more DON-up-regulated in lines that inherited this QTL. Basal accumulation of the bZIP transcript in spikelets treated with Tween20 (control), DON and in DON-relative to Tween20-treated spikelets was negatively correlated with DON-induced bleaching above (but not below) the treated spikelets (AUDPCDON) (r = −0.41, −0.75 and −0.72, respectively; P ≤ 0.010). bZIP-specific PCR analysis of ‘Chinese spring’ and its 3BS deletion derivatives indicated that bZIP is located in chromosomal region(s) other than 3BS. These results, and the fact that a homologous cold-regulated wheat bZIP (wLIP19) maps to group 1 chromosomes suggests that wheat bZIP may participate in defence response cascades associated with Fhb1 and that there is a cross-talk between biotic and abiotic stress signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BZIP:

Basic leucine zipper protein

cv. or cvs:

Cultivar(s)

DDRT-PCR:

Differential display reverse transcriptase-polymerase chain reaction

DON:

Deoxynivalenol

EF-1α:

Translation elongation factor 1 alpha

FHB:

Fusarium head blight

GAPDH:

Glyceraldehyde phosphate dehydrogenase

GDNA:

Genomic DNA

LTR:

Long terminal repeat

PCR:

Polymerase chain reaction

POX:

Peroxidase

QTL:

Quantitative trait loci

RT-PCR:

Reverse transcriptase-PCR

SSRP:

Structure-specific recognition protein

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andres MF, Melillo MT, Delibes A, Romero MD, Bleve-Zacheo T (2001) Changes in wheat root enzymes correlated with resistance to cereal cyst nematodes. New Phytol 152:243–354

    Article  Google Scholar 

  • Bai GH, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet 262:534–542

    Article  PubMed  CAS  Google Scholar 

  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53:3421–3425

    Article  PubMed  CAS  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb CJ (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Bushnell WR, Seeland TM, Perkins-Veazie PM, Krueger DE, Collins JK, Russo VM (2004) The effects of deoxynivalenol on barley leaf tissues. In: Tsuyumu S, Leach JE, Shiraishi T, Wolpert T (eds) Genomic and genetic analysis of plant parasitism and defence. APS Press, St. Paul, pp 270–284

    Google Scholar 

  • Chang S, Puryer J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    CAS  Google Scholar 

  • Doohan FM, Weston G, Rezanoor HN, Parry DW, Nicholson P (1999) Development and use of a reverse transcriptionPCR assay to study expression of TRI5 by Fusarium species in vitro and in planta. Appl Environ Microbiol 65:3850–3854

    PubMed  CAS  Google Scholar 

  • Doyle K (1996) DNA sequencing. In: Doyle K (ed) The sources for discovery, protocol and application guide. Promega corporation, USA, pp 147–162

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) Isolation of DNA from fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Grasser KD (2003) Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes. Plant Mol Biol 53:281–295

    Article  PubMed  CAS  Google Scholar 

  • Grasser KD, Grill S, Duroux M, Launholt D, Thomsen MS, Nielsen BV, Nielsen HK, Merkle T (2004) HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein. Biochemistry 43:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Han FP, Fedak G, Ouellet T, Dan H, Somers DJ (2005) Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar ‘Frontana’. Genome 48:88–96

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  PubMed  CAS  Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, van den Noort RE, Tan MYA, Prinsen E, Lagrimini LM, Thorneley RNF (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126:1012–1023

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defence. Plant Physiol 125:94–97

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in the wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Cytology and ultra structure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104:1083–1093

    Article  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Anderson JM, Ohm HW (2005) Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 48:29–40

    Article  PubMed  CAS  Google Scholar 

  • Kruger WM, Pritsch C, Chao S, Muehlbauer GJ (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum.Mol Plant Microbe Interact 15:445–455

    PubMed  CAS  Google Scholar 

  • Lee SJ, Lee MY, Yi SY, Oh SK, Choi SH, Her NH, Choi D, Min BW, Yang SG, Harn CH (2002) PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper. Mol Plant Microbe Interact 15:540–548

    PubMed  CAS  Google Scholar 

  • Lee BJ, Park CJ, Kim SK, Kim KJ, Paek KH (2006) In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter. Biochem Biophys Res Commun 344:55–62

    Article  PubMed  CAS  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy Á, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol co-localizes with a major QTL for Fusarium head blight resistance in wheat. Mol Plant Microbes Interact 18:1318–1324

    CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liu SX, Anderson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43:760–766

    Article  CAS  Google Scholar 

  • Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant cultivar Frontana. Can J Plant Pathol 8:147–150

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grains—a review. Plant Pathol 44:207–238

    Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Pritsch C, Muehbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response gene during ear infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    PubMed  CAS  Google Scholar 

  • Pritsch C, Vance CP, Bushnell WR, Somers DA, Hohn TM, Muehlbauer GJ (2001) Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection. Physiol Mol Plant Pathol 58:1–12

    Article  CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    PubMed  CAS  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ocashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell 6:1703–1712

    Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting the resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signalling of rice plants. Plant Cell Physiol 46:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Silar P, Picard M (1994) Increased longevity of EF-1 alpha high fidelity mutants in Podospora anserina. J Mol Biol 235:231–236

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Berberich T, Sano H, Kusano T (2001) Specific association of transcripts of tbzF and tbz17, tobacco genes encoding basic region leucine zipper-type transcriptional activators, with guard cells of senescing leaves and/or flowers. Plant Physiol 127:23–32

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    PubMed  CAS  Google Scholar 

  • Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770–780

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by EU FP5 project FUCOMYR (QLRT-2000-02044) and Science Foundation Ireland. We thank Austrian and UK partners (Hermann Buerstmayr, IFA-Tulln, Austria and Paul Nicholson, JIC-UK), and the Wheat Genetics Resource Center of Kansas State University (Manhattan, KS, USA) for providing wheat seed. We thank Robert Proctor (USDA Agricultural Research Service, Peoria, IL, USA) for providing the Fusarium strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul I. Ansari.

Additional information

Communicated by D. A. Hoisington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, K.I., Walter, S., Brennan, J.M. et al. Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114, 927–937 (2007). https://doi.org/10.1007/s00122-006-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0490-0

Keywords

Navigation