Skip to main content
Log in

Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (Saccharum spp. hybrid)

  • Embryogenesis/Somatic Embryogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The influence of exogenous polyamines (PAs) on somatic embryogenesis from immature leaf roll explants and Agrobacterium tumefaciens-mediated transformation of embryogenic callus of Saccharum spp. (sugarcane) ‘Co 86032’ was examined. Immature leaf roll-derived embryogenic callus was obtained on Murashige and Skoog with Gamborg B5 vitamins (MSB5) medium containing 3 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D). Various concentrations of PAs along with 2 mg L−1 2,4-D and 0.5 mg L−1 kinetin (Kin) were tested for somatic embryo induction. A total of 106 somatic embryos per 250 mg of callus (96.3% responsive explants) were obtained on medium supplemented with 20 mg L−1 putrescine (PUT) and 92.0% of the somatic embryos matured and produced 98 shoots per 250 mg of callus. Somatic embryo induction and maturation was increased more than two- and threefold, respectively, on PUT-supplemented medium compared to control cultures. Histomorphological analyses of various developmental stages verified somatic embryogenesis from immature leaf roll explants. The rooted plantlets were successfully hardened and exhibited normal growth. The efficiency of A. tumefaciens-mediated transformation of embryogenic callus using various concentrations of PAs in the infection, co-cultivation, and regeneration media was also assessed. Putrescine at 20 mg L−1 showed the highest regeneration (54.4%) and transformation (35.8%) efficiencies, which were more than twofold higher than the control treatment. These results demonstrate that exogenously supplied PAs improve plant regeneration using somatic embryogenesis and A. tumefaciens-mediated transformation of embryogenic callus of sugarcane ‘Co 86032’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ahloowalia BS, Maretzki A (1983) Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep 2:21–25

    CAS  PubMed  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Ojaghkandi MA, Heydari AA (2014) Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell Tissue Organ Cult 118:497–505

    Article  CAS  Google Scholar 

  • Altman A, Nadel BL, Falash Z, Levin N (1990) Somatic embryogenesis in celery, induction, control and changes in polyamines and proteins. In: Nijkamp HJJ, Vander Plas LHW, Van Aartrijk J (eds) Progress in plant cell culture biology. Kluwer Academic Publisher, Dordrecht, pp 454–459

    Chapter  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68:453–456. https://doi.org/10.1104/pp.68.2.453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation of sugarcane mediated by Agrobacterium tumefaciens. Transgenic Res 7:1–10

    Article  Google Scholar 

  • Arruda P (2011) Perspective of the sugarcane industry in Brazil. Trop Plant Biol 4:3–8

    Article  Google Scholar 

  • Arun M, Chinnathambi A, Subramanyam K, Karthik S, Sivanandhan G, Theboral J, Alharbi SA, Kim CK, Ganapathi A (2016) Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean. 3 Biotech 6(148):148. https://doi.org/10.1007/s13205-016-0448-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydin M, Pour AH, Haliloğlu K, Tosun M (2016) Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turk J Biol 40:1178–1184

    Article  CAS  Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    Article  CAS  PubMed  Google Scholar 

  • Bajaj S, Rajam MV (1995) Efficient plant regeneration from long-term callus cultures of rice by spermidine. Plant Cell Rep 14:717–720

    Article  CAS  PubMed  Google Scholar 

  • Balzon TA, Luis ZG, Scherwinski-Pereira JE (2013) New approaches to improve the efficiency of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) from mature zygotic embryos. In Vitro Cell Dev Biol Plant 49:41–50

    Article  CAS  Google Scholar 

  • Batista DS, Dias LLC, Macedo AF, do Rego MM, do Rego ER, Floh ELS, Finger FL, Otoni WC (2013) Suppression of ethylene levels promotes morphogenesis in pepper (Capsicum annuum L.). In Vitro Cell Dev Biol Plant 49:759–764

    Article  CAS  Google Scholar 

  • Belide S, Hac L, Singh SP, Green AG, Wood CC (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12. https://doi.org/10.1186/1746-4811-7-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bagni N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bonneau L, Beranger-Novat N, Monin J, Martin-Tanguy J (1995) Stimulation of root and somatic embryo production in Euonymus europaeus L. by an inhibitor of polyamine biosynthesis. Plant Growth Regul 16:5–10

    Article  CAS  Google Scholar 

  • Brisibe EA, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol 126:301–307

    Article  CAS  Google Scholar 

  • Butterfield MK, D’Hont AD, Berding N (2001) The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology. Proc S Afr Sugar Technol Assoc 75:1–5

    Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87:145–153

    Article  CAS  Google Scholar 

  • Couee I, Hummel I, Sulmon C, Gouesbet G, Amrani AE (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10

    Article  CAS  Google Scholar 

  • Cvikrová M, Binarová P, Cenklová V, Eder J, Machácková I (1999) Reinitiation of cell division and polyamine and monoamine levels in alfalfa explants during somatic embryogenesis. Physiol Plant 105:330–337

    Article  Google Scholar 

  • Dam A, Paul S, Bandyopadhyay TK (2010) Direct somatic embryogenesis and plant regeneration from leaf explants of Limonium sinensis (Girard) Kuntze. Sci Hortic 126:253–260

    Article  CAS  Google Scholar 

  • De-la-Peña C, Galaz-Avalos RM, Loyola-vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–224

    Article  PubMed  CAS  Google Scholar 

  • Desai NS, Suprasanna P, Bapat VA (2004) Simple and reproducible protocol for direct somatic embryogenesis from cultured immature inflorescence segments of sugarcane (Saccharum spp.). Curr Sci 87:764–768

    Google Scholar 

  • Fienberg AA, Choi JH, Lubich WP, Sung ZR (1984) Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162:532–539

    Article  CAS  PubMed  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33:382–388

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojiama K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Guiderdoni E, Demarly Y (1988) Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tissue Organ Cult 14:71–88

    Article  Google Scholar 

  • Hema BP, Murthy HN (2008) Improvement of in vitro androgenesis in niger using amino acids and polyamines. Biol Plant 52:121–125

    Article  CAS  Google Scholar 

  • Ho WJ, Vasil IK (1983a) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  • Ho WJ, Vasil IK (1983b) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726

    Article  Google Scholar 

  • Janno N, Grivet L, Segiun M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biol Plant 43:1–11

    Article  CAS  Google Scholar 

  • Kanchanapoom K, Domyoas P (1999) The origin and development of embryoids in oil palm (Elaeis guineensis Jacq.) embryo culture. Sci Asia 25:193–200

    Article  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  • Kevers C, Gaspar T, Dommes J (2002) The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tissue Organ Cult 70:181–188

    Article  CAS  Google Scholar 

  • Kevers C, Nathalie LG, Monteiro M, Dommes J, Gasper T (2000) Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regul 31:209–214

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Rajam MV (2005) Polyamines enhance Agrobacterium tumefaciens vir gene induction and T-DNA transfer. Plant Sci 168:475–480

    Article  CAS  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Lakshmanan P (2006) Somatic embryogenesis in sugarcane. In Vitro Cell Dev Biol Plant 42:201–205

    Article  CAS  Google Scholar 

  • Liu MC (1993) Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J Plant Physiol 141:714–720

    Article  Google Scholar 

  • Malgorzata DG (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 64:39–46

    Article  Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol Plant 40:572–580

    Article  CAS  Google Scholar 

  • Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa R, Kurushima M, Matsui M, Nakamura R, Kubo T, Funada R (2011) Polyamines promote the development of embryonal- suspensor masses and the formation of somatic embryos in Picea glehnii. In Vitro Cell Dev Biol Plant 47:480–487

    Article  CAS  Google Scholar 

  • Nonaka S, Yuhashi K, Takada K, Sugaware M, Minamisawa K, Ezura H (2008) Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–656

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MK, Radha E, Anitha K, Parthasarathy VA (2003) Plant regeneration from embryo-derived callus of oil palm – the effect of exogenous polyamines. Plant Cell Tissue Organ Cult 75:41–47

    Article  CAS  Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Anitha K (2014a) Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian J Agric Sci 84:527–530

    Google Scholar 

  • Rajesh M, Sivanandhan G, Jeyaraj M, Selvaraj N, Ganapathi A (2014b) An efficient in vitro system for somatic embryogenesis and podophyllotoxin production in Podophyllum hexandrum Royle. Protoplasma 251:1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Redha A, Suleman P (2011) Effects of exogenous application of polyamines on wheat anther cultures. Plant Cell Tissue Organ Cult 105:345–353

    Article  CAS  Google Scholar 

  • Reis RS, Vale EM, Heringer AS, Santa-Catarina C, Silveira V (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteome 130:170–179

    Article  CAS  Google Scholar 

  • Robie CA, Minocha SC (1989) Polyamines and somatic embryogenesis in carrot. I. The effects of difluoromethylornithine and difluoromethylarginine. Plant Sci 65:45–54

    Article  CAS  Google Scholar 

  • Roustan JP, Chraibi KM, Latche A, Fallot J (1993) Relationship between ethylene and polyamine synthesis in plant regeneration. In: Pech JC, Latche A, Balague C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer Acad. Publ, Dordrecht, pp 365–366

    Chapter  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene biosynthesis: cobalt and nickel. Plant Cell Rep 8:182–185

    Article  CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1992) Influence of ethylene on the incorporation of 3,4-[14C] methionine into polyamines in Daucus carota cells during somatic embryogenesis. Plant Physiol Biochem 30:201–205

    CAS  Google Scholar 

  • Sakhanokho HF, Peggy OA, May OL, Peng WC (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell Tissue Organ Cult 81:91–95

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GFE, Floh EIS (2007) Polyamines and nitric oxide induce morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90:93–101

    Article  CAS  Google Scholar 

  • Santanen A, Simola LK (1992) Changes in polyamine metabolism during somatic embryogenesis in Picea abies. J Plant Physiol 140:475–480

    Article  CAS  Google Scholar 

  • Sathish D, Vasudevan V, Theboral J, Elayaraja D, Appunu C, Siva R, Manickavasagam M (2018) Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cell Dev Biol Plant 54:399–412

    Article  CAS  Google Scholar 

  • Scherwinski-Pereira JE, Guedes RS, Silva RA, Fermino PCP, Luis ZG, Freitas EO (2012) Somatic embryogenesis and plant regeneration in açaí palm (Euterpe oleracea). Plant Cell Tissue Organ Cult 109:501–508

    Article  CAS  Google Scholar 

  • Shah AH, Rashid N, Haider MS, Saleem F, Tahir M, Iqbal J (2009) An efficient, short and cost-effective regeneration system for transformation studies of sugarcane (Saccharum officinarum L.). Pak J Bot 41:609–614

    CAS  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Liu CJ (2012) Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. Afr J Biotechnol 11:6064–6074

    CAS  Google Scholar 

  • Silva TER, Cidade LC, Alvim FC, Cascardo JCM, Costa MGC (2009) Studies on genetic transformation of Theobroma cacao L.: evaluation of different polyamines and antibiotics on somatic embryogenesis and the efficiency of uidA gene transfer by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 99:287–298

    Article  CAS  Google Scholar 

  • Silveira V, Vita AM, Macedo AF, Dias MFR, Floh EIS, Santa-Catarina C (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tissue Organ Cult 114:351–364

    Article  CAS  Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122:386–395

    Article  CAS  Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111:131–141

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Rekha KT, Jayabalan N, Praveen N, Kim EH, Chung IM (2013) Effect of exogenous polyamines enhances somatic embryogenesis via suspension cultures of spine guard (Momordica dioica Roxb. ex. Wild). Aust J Crop Sci 7:446–453

    CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Ingersoll RB, Galston AW (1985) Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiol 78:323–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan V, Subramanyam K, Elayaraja D, Karthik S, Vasudevan A, Manickavasagam M (2017) Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell Tissue Organ Cult 130:681–687

    Article  CAS  Google Scholar 

  • Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE (2004) Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J Biol Chem 279:51370–51375

    Article  CAS  PubMed  Google Scholar 

  • Wu XB, Wang J, Liu JH, Deng XX (2009) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang RH, Li J, Guo SR, Tezuka T (2009) Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Chen Z (2005) Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell Tissue Organ Cult 81:45–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markandan Manickavasagam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Charles Armstrong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, D., Theboral, J., Vasudevan, V. et al. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (Saccharum spp. hybrid). In Vitro Cell.Dev.Biol.-Plant 56, 29–40 (2020). https://doi.org/10.1007/s11627-019-10022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-10022-6

Keywords

Navigation