Skip to main content
Log in

The molecular basis for stress-induced acquisition of somatic embryogenesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akula A, Becker D, Bateson M (2000) High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, ‘TRI-2025’, by temporary immersion. Plant Cell Rep 19:1140–1145

    CAS  Google Scholar 

  2. Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89:10183–10187

    CAS  PubMed  Google Scholar 

  3. Baldan B, Guzzo F, Filippini F, Gasparian M, Lo Schiavo F, Vitale A, de Vries SC, Mariani P, Terzi M (1997) The secretary nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 203:381–389

    CAS  PubMed  Google Scholar 

  4. Bárány I, Testillano PS, Mitykó J, Risueno MC (2001) The switch of the microspore program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int J Dev Biol 45:39–40

    Google Scholar 

  5. Barnett T, Altschuler M, McDaniel CN, Mascarenhas JP (1980) Heat shock induced proteins in plant cells. Dev Genet 1:331–340

    CAS  Google Scholar 

  6. Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    CAS  PubMed  Google Scholar 

  7. Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tissue Organ Cult 74:267–281

    CAS  Google Scholar 

  8. Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol Mol Plant Pathol 51:347–366

    CAS  Google Scholar 

  9. Bucciaglia PA, Smith AG (1994) Cloning and characterization of Tag1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24:903–914

    CAS  PubMed  Google Scholar 

  10. Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171

    CAS  PubMed  Google Scholar 

  11. Caliskan M, Turet M, Cuming AC (2004) Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. Planta 219:132–140

    CAS  PubMed  Google Scholar 

  12. Campbell MA, Lara MH, Jennifer C (1998) The characterization of a gene encoding a putative germin-like protein from Solamun tuberosum. Plant Physiol 118:711–715

    Google Scholar 

  13. Cao X (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212–2217

    CAS  PubMed  Google Scholar 

  14. Chang C (2003) Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci 8:365–368

    CAS  PubMed  Google Scholar 

  15. Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    CAS  PubMed  Google Scholar 

  16. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    CAS  PubMed  Google Scholar 

  17. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    CAS  PubMed  Google Scholar 

  18. Chlan CA, Bourgeois PB (2001) Class I chitinases in cotton (Gossypium hirsutum): characterization, expression and purification. Plant Sci 161:143–154

    CAS  Google Scholar 

  19. Chugh A, Khurana PJ (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  20. Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat shock protein genes in plants: analysis of water stressinducible and developmentally activated sunflower promoter. Plant Mol Biol 31:863–876

    CAS  PubMed  Google Scholar 

  21. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277

    CAS  PubMed  Google Scholar 

  22. Collada C, Gomez L, Casado R, Aragoncillo C (1997) Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115:71–77

    CAS  PubMed  Google Scholar 

  23. Cordewener JHG, Hause G, Görgen E, Busink R, Hause B, Dons HJM, van Lammeren AAM, van Lookeren Campagne MM, Pechan P (1997) Changes in synthesis and localization of members of the 70-kDa class of heat-shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta 196:747–755

    Google Scholar 

  24. Davletova S, Me’sza’ros T, Miskolczi P, Oberschall A, To¨ro¨k K, Magyar Z, Dudits D, Dea’k M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    CAS  PubMed  Google Scholar 

  25. De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    PubMed  Google Scholar 

  26. De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 61:5–620

    Google Scholar 

  27. Delessert C, Wilson IW, Van der Straeten D, Dennis ES, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol 55:165–181

    CAS  PubMed  Google Scholar 

  28. Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis thaliana suspension cultures. Biochem J 330:115–120

    CAS  PubMed  Google Scholar 

  29. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome byoxidative stress. Plant Physiol 127:159–172

    CAS  PubMed  Google Scholar 

  30. Domon JM, Dumas B, Laine E, Meyer Y, David A, David H (1995) Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity antibodies directed against the wheat germin apoprotein monomer. Plant Physiol 108:141–148

    CAS  PubMed  Google Scholar 

  31. Dong JZ, Dunstan DI (1996) Characterization of three heat-shock-protein genes and their developmental regulation during somatic embryogenesis in white spruce. Planta 200:85–91

    CAS  PubMed  Google Scholar 

  32. Dong JZ, Dunstan DI (1997) Endochitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    CAS  PubMed  Google Scholar 

  33. Dudits D, Gyorgyey J, Bgre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants. Kluwer Academic, Dordrecht, pp 267–308

    Google Scholar 

  34. Dumas B, Freyssinet G, Pallett KE (1995) Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol 107:1091–1096

    CAS  PubMed  Google Scholar 

  35. Dunwell JM (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15:1–32

    CAS  PubMed  Google Scholar 

  36. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17

    CAS  PubMed  Google Scholar 

  37. Dyachok JV, Wiweger M, Kenne L, von Arnold S (2002) Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533

    CAS  PubMed  Google Scholar 

  38. Egertsdotter U, von Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345

    CAS  Google Scholar 

  39. Egertsdotter U, von Arnold S (1998) Development of somatic embryos in Norway spruce. J Exp Bot 49:155–162

    CAS  Google Scholar 

  40. Fan LM, Zhao ZX, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 7:537–546

    CAS  PubMed  Google Scholar 

  41. Fedina IS, Tsonev TD, Guleva EI (1994) ABA as modulator of the response of Pisum sativum to salt stress. J Plant Physiol 143:245–249

    CAS  Google Scholar 

  42. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    CAS  Google Scholar 

  43. Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos Nucifera L.). Plant Sci 151:193–198

    CAS  PubMed  Google Scholar 

  44. Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    CAS  PubMed  Google Scholar 

  45. Forreiter C, Kirschner M, Nover L (1997) Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 9:2171–2181

    CAS  PubMed  Google Scholar 

  46. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    CAS  PubMed  Google Scholar 

  47. Gaestel M, Vierling E, Buchner J (1997) The small heat shock protein (sHSP) family: an overview. In: Gething M-J (ed) Guidebook to molecular chaperones and protein-folding catalysts. Oxford University Press, New York, pp 269–272

    Google Scholar 

  48. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    CAS  Google Scholar 

  49. Galland R, Randoux B, Vasseur J, Hilbert JL (2001) A glutathione s-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    CAS  PubMed  Google Scholar 

  50. Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    CAS  PubMed  Google Scholar 

  51. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    CAS  PubMed  Google Scholar 

  52. Gerhardt LB, Magioli C, Perez Ana BUCM, Margis R, Sachetto-Martins G, Margis-Pinheiro M (2004) AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development. Genet Mol Biol 27:118–123

    CAS  Google Scholar 

  53. Giese KC, Basha E, Catague BY, Vierling E (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci USA 102:18896–18901

    CAS  PubMed  Google Scholar 

  54. Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26:1557–1577

    CAS  PubMed  Google Scholar 

  55. Gruner R, Pfitzner UM (1994) The upstream region of the gene for the pathogenesis-related protein 1a from tobacco responds to environmental as well as to developmental signals in transgenic plants. Eur J Biochem 220:247–255

    CAS  PubMed  Google Scholar 

  56. Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    CAS  PubMed  Google Scholar 

  57. Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, pp 423–459

    Google Scholar 

  58. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    CAS  PubMed  Google Scholar 

  59. Gyorgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007

    CAS  PubMed  Google Scholar 

  60. Harada H, Kiyosue T, Kamada H, Kobayashi K (1990) Stress induced carrot somatic embryogenesis and their application to synthetic seeds. In: Sangwan RS, Sangwan-Norreel BS (eds) The impact of biotechnology in agriculture. Kluwer Academic, Dordrecht, pp 129–157

    Google Scholar 

  61. Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183

    CAS  Google Scholar 

  62. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Plant Physiol Mol Biol 51:463–499

    CAS  Google Scholar 

  63. Helleboid S, Couillerot JP, Hilbert J-L, Vasseur J (1995) Effects of α-difluoromethylarginine on embryogenesis, polyamine content and protein patterns in a Cichorium hybrid. Planta 196:571–576

    CAS  Google Scholar 

  64. Helleboid S, Bauw G, Belingheri L, Vasseur J, Hilbert J-L (1998) Extracellular β-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205:56–63

    CAS  PubMed  Google Scholar 

  65. Helleboid S, Hendriks T, Bauw G, Inzé D, Vasseur J, Hilbert J-L (2000) Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J Exp Bot 51:1189–1200

    CAS  PubMed  Google Scholar 

  66. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    CAS  PubMed  Google Scholar 

  67. Hernandez LD, Vierling E (1993) Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol 101:1209–1216

    CAS  PubMed  Google Scholar 

  68. Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    CAS  PubMed  Google Scholar 

  69. Hodge A, Alexander IJ, Gooday GW (1996) Measurement in situ of chitinase and β-N-acetylglucosaminidase activities in germinating seeds of Pinus sylvestris and Eucalyptus pilularis. Plant Physiol Biochem 34:301–306

    CAS  Google Scholar 

  70. Hoekstra S, van Bergen S, van Brouwershaven IR, Schilperoort RA, Wang M (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218

    CAS  Google Scholar 

  71. Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    CAS  PubMed  Google Scholar 

  72. Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    CAS  PubMed  Google Scholar 

  73. Iwai MI, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Google Scholar 

  74. Jiang M, Zhang J (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022–1030

    CAS  PubMed  Google Scholar 

  75. Jimenez VM, Bangerth F (2001) Endogenous hormone levels in initial explants and in embryogenic and nonembryogenic callus cultures of competent and non-competent wheat genotypes. Plant Cell Tissue Organ Cult 67:37–46

    CAS  Google Scholar 

  76. Jimnez VM, Guevara E, Herrera J, Bangerth F (2005) Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Rep 23:567–572

    Google Scholar 

  77. Kamada H, Harada H (1979) Studies on organogenesis in carrot tissue culture. I. Effects of growth regulation on somatic embryogenesis and root formation. Z Pflanzenphysiol 91:225–266

    Google Scholar 

  78. Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    CAS  Google Scholar 

  79. Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stresses induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11:229–232

    Google Scholar 

  80. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed  Google Scholar 

  81. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 10:2733–2748

    Google Scholar 

  82. Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    CAS  Google Scholar 

  83. Karami O, Deljou A, Karami Kordestani G (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus). Plant Cell Tissue Organ Cult 92:273–280

    Google Scholar 

  84. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13:421–426

    CAS  PubMed  Google Scholar 

  85. Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci USA 78:3526–3530

    CAS  PubMed  Google Scholar 

  86. Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    CAS  PubMed  Google Scholar 

  87. Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218:516–524

    CAS  PubMed  Google Scholar 

  88. Kim R, Kim KK, Yokota H, Kim SH (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95:9129–9133

    CAS  PubMed  Google Scholar 

  89. Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    CAS  Google Scholar 

  90. Kiyosue T, Kamada H, Harada H (1989) Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Cult Lett 6:162–164

    Google Scholar 

  91. Kiyosue T, Satoh S, Kamada H, Harada H (1992) Purification and immunohistochemical detection of an embryogenic cell protein in carrot. Plant Physiol 95:1077–1083

    Google Scholar 

  92. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H, Harada H (1993) cDNA cloning of ECP40, an embryogeniccell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol Biol 21:1053–1068

    CAS  PubMed  Google Scholar 

  93. Kiyosue T, Satoh S, Kamada H, Harada H (1993) Somatic embryogenesis in higher plants. J Plant Res 3:75–82

    Google Scholar 

  94. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Google Scholar 

  95. Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    CAS  PubMed  Google Scholar 

  96. Koornneef M, Reuling G, Karessen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Plant Physiol 6:377–383

    Google Scholar 

  97. Krishnaveni S, Liang GH, Muthukrishnan S, Manickam A (1999) Purification and partial characterisation of chitinases from sorghum seeds. Plant Sci 144:1–7

    CAS  Google Scholar 

  98. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants incotton (Gossypium hirsutum) trough metabolic stress. Plant Cell Rep 21:635–639

    CAS  PubMed  Google Scholar 

  99. Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8:294–301

    CAS  PubMed  Google Scholar 

  100. Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53:67–75

    CAS  PubMed  Google Scholar 

  101. Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed  Google Scholar 

  102. Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415

    CAS  Google Scholar 

  103. Leljak-Levanic D, B Naana, Jelaska MS (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127

    CAS  PubMed  Google Scholar 

  104. Li L, Qu R (2002) In vitro somatic embryogenesis in turftype bermudagrass: roles of abscisic acid and gibberellic acid, and occurrence of secondary somatic embryogenesis. Plant Breed 121:155–158

    CAS  Google Scholar 

  105. Lo Schiavo F, Pitto L, Giuliano G, Torti G, Nuit-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell culture and its variation as caused by mutation differentiation hormones and hypomethyalating. Theory Apply Genet 77:325–331

    CAS  Google Scholar 

  106. Lo Schiavo F, Giuliano G, de Vries S, Genga A, Bollini R, Pitto L, Cozzani F, Nuti-Ronchi V, Terzi M (1990) A carrot cell variant temperature sensitive for somatic embryogenesis reveals a defect in the glycosylation of extracellular proteins. Mol Gen Genet 223:385–393

    CAS  PubMed  Google Scholar 

  107. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    CAS  PubMed  Google Scholar 

  108. Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    CAS  PubMed  Google Scholar 

  109. Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astralagus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161:125–132

    CAS  Google Scholar 

  110. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-DI, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    CAS  PubMed  Google Scholar 

  111. Maraschin SF, Priester W, Spaink HP, Wang M (2005) Androgenetic switch an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    CAS  PubMed  Google Scholar 

  112. Mathieu M, Neutelings G, Hawkins S, Grenier E, David H (2003) Cloning of a pine germin-like protein (GLP) gene promoter and analysis of its activity in transgenic tobacco bright yellow 2 cells. Physiol Plant 117:425–434

    CAS  PubMed  Google Scholar 

  113. Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 6:615–627

    Google Scholar 

  114. Mauch F, Mauch-Mani B, BoUer T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    CAS  PubMed  Google Scholar 

  115. Membre N, Berna A, Neutelings G, David A, David H, Staiger D, Saez Vasquez J, Raynal M, Delseny M, Bernier F (1997) cDNA sequence, genomic organization and differential expression of three Arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol 35:459–469

    CAS  PubMed  Google Scholar 

  116. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Gyorgy BK, Oldroyd ED (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19:1221–1234

    CAS  PubMed  Google Scholar 

  117. Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Google Scholar 

  118. Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    CAS  PubMed  Google Scholar 

  119. Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  120. Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hort 90:85–92

    CAS  Google Scholar 

  121. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    CAS  PubMed  Google Scholar 

  122. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8

    CAS  Google Scholar 

  123. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    CAS  PubMed  Google Scholar 

  124. Neutelings G, Domon JM, Membre N, Bernier F, Meyer Y, David A, David H (1998) Characterization of a germin-like protein gene expressed in somatic and zygotic embryos of pine (Pinus caribaea Morelet). Plant Mol Biol 38:1179–1190

    CAS  PubMed  Google Scholar 

  125. Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    CAS  PubMed  Google Scholar 

  126. Nolan KE, Rose RJ (1998) Plant regeneration from cultured Medicago truncatula with particular reference to abscisic acid and light treatments. Aust J Bot 46:151–160

    CAS  Google Scholar 

  127. Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    CAS  PubMed  Google Scholar 

  128. Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    CAS  PubMed  Google Scholar 

  129. Ogata Y, Iizuka M, Nakayama D, Ikeda M, Kamada H, Koshiba T (2005) Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed coat-derived carrot somatic embryos. Planta 221:417–423

    CAS  PubMed  Google Scholar 

  130. Ohmiya A, Tanaka Y, Kadowaki K, Hayashi T (1998) Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol 39:492–499

    CAS  PubMed  Google Scholar 

  131. Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    CAS  PubMed  Google Scholar 

  132. Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    CAS  PubMed  Google Scholar 

  133. Passarinho P, De Vries SC (2002) The Arabidopsis Book. In: Sommerville CR, Meyerowitz EM (eds) Arabidopsis chitinases: A genomic survey. American Society of Plant Biologists, Rockville, MD, pp 2–25

    Google Scholar 

  134. Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen H, Dudits D, Fehér A (2002) The role of auxin. pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129:1807–1819

    CAS  PubMed  Google Scholar 

  135. Patnaik D, Khurana P (2001) Germins and germin like proteins: an overview. Indian J Exp Biol 39:191–200

    CAS  PubMed  Google Scholar 

  136. Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43:740–745

    CAS  PubMed  Google Scholar 

  137. Petruzzelli L, Kunz C, Waldvogel R, Meins F Jr, Leubner-Metzger G (1999) Distinct ethylene- and tissue-specific regulation of beta-1,3-glucanases and chitinases during pea seed germination. Planta 209:195–201

    CAS  PubMed  Google Scholar 

  138. Pfeiffer W, Hoftberger M (2001) Oxidative burst in Chenopodium rubrum suspension cells: induction by auxin and osmotic changes. Physiol Plantarum 111:144–150

    CAS  Google Scholar 

  139. Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    CAS  PubMed  Google Scholar 

  140. Pittock C, Weinman JJ, Rolfe BG (1997) The activity of a tobacco basic chitinase promotor in transgenic white lover provides insights into plant development and symbiosis. Aust J Plant Physiol 24:555–561

    CAS  Google Scholar 

  141. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S et al (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    CAS  PubMed  Google Scholar 

  142. Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    CAS  PubMed  Google Scholar 

  143. Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91:1743–1756

    CAS  Google Scholar 

  144. Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CP, Rodrigues-Pousada C (2000) The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds. Planta 210:543–550

    CAS  PubMed  Google Scholar 

  145. Rensing SA, Daniel L, Schumann E, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regu 24:102–115

    CAS  Google Scholar 

  146. Ribnicky DM, Ilic N, Cohen JD, Cooke TJ (1996) The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism. The implications for carrot somatic embryogenesis. Plant Physiol 112:549–558

    CAS  PubMed  Google Scholar 

  147. Rose RJ (2004) Somatic embryogenesis in plants. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker Inc., New York, pp 1165–1168

    Google Scholar 

  148. Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    CAS  Google Scholar 

  149. Saab IN, Sharp RE, Pritchard J (1992) Effect of inhibition of abscisic acid accumulation on spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiol 99:26–33

    CAS  PubMed  Google Scholar 

  150. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    CAS  PubMed  Google Scholar 

  151. Santarem E, Pelissier B, Finer J (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol Plant 33:13–19

    CAS  Google Scholar 

  152. Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin-controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol 81:931–933

    CAS  PubMed  Google Scholar 

  153. Sauser C, Kwiatkowski J, Jung J, Grossamann K (1992) Accumulation of abscisic acid in cell suspension cultures of oilseed rape treated with the growth retardant BAS111.W: effects on osmotic potential and potassium, water and sugar contents. J Plant Physiol 140:747–753

    Google Scholar 

  154. Saze H, Scheid OM, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69

    CAS  PubMed  Google Scholar 

  155. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed  Google Scholar 

  156. Schultze M, Staehelin C, Brunner F, Genetet I, Legrand M, Fritig B, Kondorosi E, Kondorosi A (1998) Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide nod signals. Plant J 16:571–580

    CAS  Google Scholar 

  157. Segarra CI, Casalongue CA, Pinedo ML, Ronchi VP, Conde RD (2003) A germin-like protein of wheat leaf apoplast inhibits serine proteases. J Exp Bot 54:1335–1341

    CAS  PubMed  Google Scholar 

  158. Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    CAS  PubMed  Google Scholar 

  159. Shashidharamurthy R, Hanane A, Koteiche JD, Mchaourab HS (2005) Mechanism of chaperone function in small heat shock proteins. J Biol Chem 280:5281–5289

    CAS  PubMed  Google Scholar 

  160. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    CAS  PubMed  Google Scholar 

  161. Shiota H, Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homologue of ABI3. J Plant Physiol 156:510–515

    CAS  Google Scholar 

  162. Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) CABI3, the carrot homologue of Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39:1184–1193

    CAS  PubMed  Google Scholar 

  163. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512

    CAS  PubMed  Google Scholar 

  164. Smykal P, Pechan PM (2000) Stress, as assessed by the appearance of sHsp transcripts, is required but not sufficient to initiate androgenesis. Physiol Plant 110:135–143

    CAS  Google Scholar 

  165. Souter M, Lindsey K (2000) Polarity and signalling in plant embryogenesis. J Exp Bot 51:971–983

    CAS  PubMed  Google Scholar 

  166. Stasolla C, Bozhkov PV, Chu TM, Van Zyl L, Egertsdotter U, Suarez MF et al (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    CAS  PubMed  Google Scholar 

  167. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: ge-microsnetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    CAS  PubMed  Google Scholar 

  168. Tabuchi T, Kumon T, Azuma T, Nanmori T, Yasuda T (2003) The expression of a germin-like protein with superoxide dismutase activity in the halophyte Atriplex lentiformis is differentially regulated by wounding and abscisic acid. Physiol Plant 118:523–531

    CAS  Google Scholar 

  169. Tachikawa Y, Saitou T, Kamada H, Harada H (1998) Changes in protein pattern during stress-induction of carrot (Daucus carota L.) somatic embryogenesis. Plant Biotechnol 15:17–22

    CAS  Google Scholar 

  170. Tchorbadjieva M, Pantchev I, Harizanova N (2004) Two-dimensional protein pattern analysis of extracellular proteins secreted by embryogenic and non-embryogenic suspension cultures of Dactylis glomerata L. Biotechnol Biotechnol Eq 18:20–27

    CAS  Google Scholar 

  171. Tchorbadjiva MI, Pantchev IY (2006) Secretion of a chitinase-like protein in embryogenic suspension cultures of Dactylis glomerata L. Biol Plant 50:142–145

    Google Scholar 

  172. Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    CAS  PubMed  Google Scholar 

  173. Thompson EW, Lane BG (1980) Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J Biol Chem 255:5965–5970

    CAS  PubMed  Google Scholar 

  174. Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    CAS  PubMed  Google Scholar 

  175. Touraev A, Vicente O, Heberlebors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Google Scholar 

  176. Tranthi L, Pleschka E (2005) Somatic embryogenesis of some Daucus species influenced by ABA. J Appl Bot Food Qual 79:1–4

    Google Scholar 

  177. van der Holst PPG, Schlaman HRM, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    PubMed  Google Scholar 

  178. van Hengel A, Guzzo F, van Kammen AB, de Vries SC (1998) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol 117:43–53

    PubMed  Google Scholar 

  179. van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    PubMed  Google Scholar 

  180. van Hengel AJ, van Kammen A, de Vries SC (2002) A relationship between seed development, Arabinogalactan-protein (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644

    PubMed  Google Scholar 

  181. Vogler H, Kuhlemeier C (2003) Simple hormones but complex signalling. Curr Opin Plant Biol 6:51–56

    CAS  PubMed  Google Scholar 

  182. Vrienten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463

    Google Scholar 

  183. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    CAS  PubMed  Google Scholar 

  184. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  185. Wendt dos Santos AL, Steier N, Guerra MP, Zoglauer K, Moerschbacher BM (2008) Somatic embryogenesis in Araucaria angustifolia. Biol Plant 52:195–199

    CAS  Google Scholar 

  186. Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    CAS  PubMed  Google Scholar 

  187. Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Experim Bot 54:2691–2699

    CAS  Google Scholar 

  188. Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. The Plant Cell 18:805–814

    CAS  PubMed  Google Scholar 

  189. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    CAS  PubMed  Google Scholar 

  190. Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    CAS  PubMed  Google Scholar 

  191. Yoon HW, Kim MC, Shin PG, Kim JS, Kim CY, Lee SY, Hwang I, Bahk JD, Hong JC, Han C, Cho MJ (1997) Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet 255:359–371

    CAS  PubMed  Google Scholar 

  192. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    CAS  PubMed  Google Scholar 

  193. You XL, Yi JS, Choi YE (2006) Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma 227:105–112

    Google Scholar 

  194. Young JC, Barral JM, Hartl UF (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28:541–547

    CAS  PubMed  Google Scholar 

  195. Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183

    CAS  PubMed  Google Scholar 

  196. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

  197. zur Nieden U, Neumann D, Bucka A, Nover L (1995) Tissue specific localisation of heat-stress proteins during embryo formation. Planta 196:530–538

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Karami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, O., Saidi, A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37, 2493–2507 (2010). https://doi.org/10.1007/s11033-009-9764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9764-3

Keywords

Navigation