Skip to main content
Log in

Efficient plant regeneration from long-term callus cultures of rice by spermidine

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A significant reduction in regeneration potential with increasing age (upto 12months) in rice (Oryza sativa L. cv.TN-1) embryogenic callus cultures was observed. Spermidine, while having an inhibitory effect on plant regeneration in fresh callus cultures, promoted morphogenesis in long-term callus cultures. A massive accumulation of polyamines, particularly putrescine (5-fold) was observed in 12 month old cultures resulting in a change of putrescine /spermidine ratio, which seems to be important for maintaining the morphogenetic response. Application of exogenous spermidine to 12 month old cultures showed increased levels of polyamines and restored the putrescine/spermidine ratio comparable to that found in freshly induced cultures, concomitantly, promoting the plant regeneration via somatic embryogenesis in long-term rice callus cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PA:

Polyamines

PCA:

Perchloric acid

PUT:

Putrescine

SPD:

Spermidine

SPM:

Spermine

References

  • Abe T, Futsuhara Y (1991) In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 14: Rice, Springer-Verlag, Berlin, pp 38–57

    Google Scholar 

  • Altman A, Nadel BL, Falash Z, Levin N (1990) In: Nijkamp HJJ, VanMonPlas LHW, Van Aartrijk J (eds) Progress in Plant Cellular and Molecular Biology, Kluwer Academic Publishers, Amsterdam, pp 454–459

    Google Scholar 

  • Binh DQ, Heszky LE (1990) J. Plant Physiol. 136 336–340

    Google Scholar 

  • Binh DQ, Heszky LE, Gyulai G, Csillag A (1992) Plant Cell, Tiss. Org. Cult. 29: 75–82

    Google Scholar 

  • Bradley PM, El-Fiki F, Giles KL (1984) Plant Sci. Lett. 34: 397–401.

    Google Scholar 

  • Chatterjee S, Maitra N, Ghosh B, Sen SP (1988) Plant Cell Physiol. 29: 1207–1213

    Google Scholar 

  • Croughan TP, Chu QR (1991) In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 14, Rice Springer-Verlag, Berlin, pp 19–37

    Google Scholar 

  • DiTomaso JM, Hart JJ, Kochian LV (1992) Plant Physiol. 98: 611–620

    Google Scholar 

  • Evans PT, Malmberg RL (1989) Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 235–269

    Google Scholar 

  • Faure O, Mengoli M, Nougarede A, Bagni N (1991) J.Plant Physiol. 138: 545–549

    Google Scholar 

  • Feirer RP, Wann SR, Einspahr DW (1985) Plant Gr. Regul. 3: 317–327

    Google Scholar 

  • Flores HE, Galston AW (1982) Plant Physiol. 69: 701–706

    Google Scholar 

  • Flores HE, Protacio CM, Signs MW (1989) In: Poulton JE, Romeo JT, Conn EE (eds) Plant Nitrogen Metabolism. Recent Advances in Phytochemistry, Vol.23, Plenum Press, New York, pp. 329–393.

    Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Plant Physiol. 94: 406–410

    Google Scholar 

  • Heyser JW, Dykes TA, DeMott KJ, Nabors MW (1983) Plant Sci. Lett. 29: 175–182

    Google Scholar 

  • Kaur-Sawhney R, Shih LM, Flores HE, Galston AW (1982) Plant Physiol. 69: 405–410

    Google Scholar 

  • Kaur-Sawhney R, Kandpal G, McGoingle B, Galston AW (1990) Planta 181: 212–215

    Google Scholar 

  • Kavikishor PB, Reddy GM (1986) J. Plant Physiol. 126: 49–54

    Google Scholar 

  • Kavikishor PB (1987) Plant Sci. 48: 189–194

    Google Scholar 

  • Mengoli M, Bagni N, Luccarini G, Nuti-Ronchi V, Serafini-Fracassini D (1989) J. Plant Physiol. 134: 389–394

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497

    Google Scholar 

  • Ozawa K, Komamine AC (1989) Theor. Appl. Genet. 77: 205–211

    Google Scholar 

  • Pius J, George L, Eapen S, Rao PS (1993) Plant Cell, Tiss. Org. Cult. 32: 91–96

    Google Scholar 

  • Raghava Ram NV, Nabors MW (1985) Plant Cell, Tiss. Org. Cult. 4: 241–248

    Google Scholar 

  • Rajam MV, Weinstein LH, Galston AW (1985) Proc. Natl. Acad. Sci. USA, 82: 6874–6878

    Google Scholar 

  • Rajam MV (1989) Plant Sci. 59: 53–56

    Google Scholar 

  • Rajam MV (1993) Curr. Sci. 65: 461–469

    Google Scholar 

  • Reggiani R, Hochkoeppler A, Bertani A (1989) Plant Cell Physiol. 30: 893–898

    Google Scholar 

  • Robie CA, Minocha SC (1989) Plant Sci. 65: 45–54

    Google Scholar 

  • Sanchez-Gras MC, Segura J (1988) Plant Sci. 57: 151–158

    Google Scholar 

  • Shen HJ, Galston AW (1985) Plant Gr. Regul. 3: 353–363

    Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) Arch. Biochem. Biophys. 235: 283–303

    Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Ingersoll RB, Galston AW (1985) Plant Physiol. 78: 323–326

    Google Scholar 

  • Tiburcio AF, Figueras X, Claparols I, Santos M, Torne JM (1991) Plant Cell, Tiss. Org. Cult. 27: 27–32

    Google Scholar 

  • Vasil V, Vasil IK, Lu C (1984) Amer. J. Bot. 71: 158–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Komamine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, S., Rajam, M.V. Efficient plant regeneration from long-term callus cultures of rice by spermidine. Plant Cell Reports 14, 717–720 (1995). https://doi.org/10.1007/BF00232654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232654

Key words

Navigation