Skip to main content
Log in

Plant tissue culture media and practices: an overview

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

This review presents an overview of the culture media and practices used in plant tissue culture and developmental biology. The compositions of the most commonly used basal media, especially Murashige and Skoog (MS) and modified MS (MMS), Gamborg’s B5 medium and B5 modifications, Woody Plant Medium (WPM), and Driver and Kuniyuki Woody plant medium (DKW) are discussed, along with typical basal medium manipulations to elicit and support various developmental responses. The most commonly used plant growth regulators and their applications to promote various developmental responses are examined, along with a presentation of the classical phytohormone developmental models for organogenesis and somatic embryogenesis. Elaborated developmental models for both organogenesis and somatic embryogenesis, with emphasis on discrete developmental steps, occasional need for multiple manipulations in culture to achieve a single developmental step, and identification of responsive tissue types in mixed cultures are explored. It is hoped that the information presented here will lead to a deeper understanding of basic tissue culture responses and will assist the reader in the decision-making process by identifying appropriate media and culture conditions for a particular species or application, or by providing a suitable starting point, should further customization be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214

    Article  CAS  PubMed  Google Scholar 

  • Biddington NL (1992) The influence of ethylene in plant tissue culture. Plant Growth Regul 11:173–187

    Article  CAS  Google Scholar 

  • Calderon Villalobos LIA, Lee S, Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury MRDA, Hubstenberger J, Phillips G (2006) Development of in vitro regeneration protocols for Arkansas rice varieties (Oryza sativa L.). J Arkansas Acad Sci 60:108–112

    CAS  Google Scholar 

  • Christianson ML (1987) Causal events in morphogenesis. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R. Liss, New York, NY, pp 45–55

    Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proc. Symp. On Plant Tissue Culture. Science Press, Beijing, China, pp 43–50

    Google Scholar 

  • Chu IYE (1992) Perspectives of micropropagation industry. In: Kurata K, Kozai T (eds) Transplant production systems. Kluwer Academic, Amsterdam, The Netherlands, pp 137–150

    Chapter  Google Scholar 

  • Collins GB, Phillips GC (1982) In vitro tissue culture and plant regeneration in Trifolium pratense L. In: Earle ED, Demarly Y (eds) Variability in plants regenerated from tissue cultures. Praeger Scientific, New York, NY, pp 22–34

    Google Scholar 

  • Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signaling pathways. J Exp Bot 65:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Dabul ANG, Belefant-Miller H, Chowdhury MR, Hubstenberger JF, Lorence A, Phillips GC (2009) Screening of a broad range of rice (Oryza sativa L.) germplasm for in vitro rapid plant regeneration and development of an early prediction system. In Vitro Cell Dev Biol–Plant 45:414–420

    Article  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstocks. HortScience 19:507

    Google Scholar 

  • Dunstan DI, Short KC (1977) Improved growth of tissue cultures of the onion, Allium cepa. Physiol Plant 41:70–72

    Article  Google Scholar 

  • Dunstan DI, Short KC (1978) Shoot production from onion callus tissue cultures. Scientia Hort 9:99–110

    Article  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309

    Article  Google Scholar 

  • Finer JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult 15:125–136

    Article  CAS  Google Scholar 

  • Gallie DR (2015) Ethylene receptors in plants—why so much complexity? F1000Prime Rep 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitro 12:473–478

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Phillips GC (eds) (1995) Plant cell tissue organ culture: fundamental methods. Springer, Heidelberg, Germany, p 358

    Google Scholar 

  • George EF, Hall MA, de Klerk GJ (2008) Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Heidelberg, Germany, pp 175–204

    Google Scholar 

  • Gladfelter HJ, Phillips GC (1987) De novo shoot organogenesis of Pinus eldarica Medw. in vitro. I. Reproducible regeneration from long-term callus cultures. Plant Cell Rep 6:163–166

    Article  CAS  PubMed  Google Scholar 

  • Greenway MB, Phillips IC, Lloyd MN, Hubstenberger JF, Phillips GC (2012) A nutrient medium for diverse applications and tissue growth of plant species in vitro. In Vitro Cell Dev Biol–Plant 48:403–410

    Article  CAS  Google Scholar 

  • Grosser JW, Collins GB (1984) Isolation and culture of Trifolium rubens protoplasts with whole plant regeneration. Plant Sci Lett 37:165–170

    Article  Google Scholar 

  • Hansen EE, Hubstenberger JF, Phillips GC (1995) Regeneration of shoots from cell suspension-derived protoplasts of Allium cepa L. Plant Cell Rep 15:8–11

    Article  CAS  PubMed  Google Scholar 

  • Herman EB (2015) Recent advances in plant tissue culture XXI. Media and techniques for growth, regeneration and storage: 2011–2015. Agritech Consultants Inc., Shrub Oak, NY 148 pp

    Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazurn: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–109

    Article  CAS  Google Scholar 

  • Hyde C, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol–Plant 32:72–80

    Article  CAS  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    Article  CAS  Google Scholar 

  • Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154:479–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson L (1925) Physical study of the symbiotic germination of orchid seeds. Bot Gaz 79:345–379

    Article  CAS  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  PubMed  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • McCown BH, Zeldin EL, Pinkalla HA, Dedolph RR (1988) Nodule culture: a developmental pathway with high potential for regeneration, automated micropropagation, and plant metabolite production from woody plants. In: Hanover JW, Keathley DE, Wilson CM, Kuny G (eds) Genetic manipulation of woody plants. Basic Life Sciences, vol 44. Springer, Boston, MA, pp 149–166

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Myers JR, Grosser JW, Taylor NL, Collins GB (1989) Genotype-dependent whole plant regeneration from protoplasts of red clover (Trifolium pratense L.). Plant Cell Tissue Organ Cult 113:127

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  Google Scholar 

  • Phillips GC (1988) Developmental models for the expression of totipotency and plant regeneration in vitro. In: SAAS Bulletin: Biochemistry and Biotechnology, Vol. 1, Ballal SK (ed), pp. 12–16. Tennessee Tech. Univ., Cookeville, TN

  • Phillips GC, Collins GB (1979a) In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci 19:59–64

    Article  Google Scholar 

  • Phillips GC, Collins GB (1979b) Virus symptom-free plants of red clover using meristem culture. Crop Sci 19:213–216

    Article  Google Scholar 

  • Phillips GC, Collins GB (1980) Somatic embryogenesis from cell suspension cultures of red clover. Crop Sci 20:323–326

    Article  CAS  Google Scholar 

  • Phillips GC, Collins GB (1984) Red clover and other forage legumes. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 2. MacMillan Publ, New York, NY, pp 169–210

    Google Scholar 

  • Phillips GC, Collins GB, Taylor NL (1982) Interspecific hybridization of red clover (Trifolium pratense L.) with T. sarosiense Hazsl. using in vitro embryo rescue. Theor Appl Genet 62:17–24

    Article  CAS  PubMed  Google Scholar 

  • Phillips GC, Grosser JW, Berger S, Taylor NL, Collins GB (1992) Interspecific hybridization between red clover and Trifolium alpestre using in vitro embryo rescue. Crop Sci 32:1113–1115

    Article  Google Scholar 

  • Phillips GC, Hubstenberger JF (1987) Plant regeneration in vitro of selected Allium species and interspecific hybrids. HortScience 22:124–125

    CAS  Google Scholar 

  • Phillips GC, Luteyn KJ (1983) Effects of picloram and other auxins on onion tissue cultures. J Amer Soc Hort Sci 108:948–953

    CAS  Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaft 45:344–345

    Article  CAS  Google Scholar 

  • Samoylov VM, Tucker DM, Thibaud-Nissen F, Parrott WA (1998) A liquid-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep 18:49–54

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Soc Exp Biol Symp 11:118–131

    CAS  Google Scholar 

  • Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Vacin EF, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613

    Article  CAS  Google Scholar 

  • Valera-Montero L, Phillips GC (2005) Long-lasting Capsicum baccatum ‘organogenetic callus’ formation. In Vitro Cell Dev Biol–Plant 41:470–476

    Article  Google Scholar 

  • Wagley LM, Gladfelter HJ, Phillips GC (1987) De novo shoot organogenesis of Pinus eldarica Medw. in vitro. II. Macro- and micro-photographic evidence of de novo regeneration. Plant Cell Rep 6:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiao Y (2018) Auxin and above-ground meristems. J Exp Bot 69:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The cytokinin receptors are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. John Finer for his encouragement and guidance for this article. The authors also thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Phillips.

Additional information

Editor: Charles Armstrong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, G.C., Garda, M. Plant tissue culture media and practices: an overview. In Vitro Cell.Dev.Biol.-Plant 55, 242–257 (2019). https://doi.org/10.1007/s11627-019-09983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-09983-5

Keywords

Navigation