Skip to main content

Engineering Advantages, Challenges and Status of Sugarcane and other Sugar-Based Biomass Resources

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

Sugarcane (Saccharum spp.) is a highly productive tropical stem crop that has been cultivated for its high sugar content for hundreds of years. In recent times, sugarcane has been the focus of several programs aiming at the production of fuel ethanol. Compared to starch-based sources such as corn, production of ethanol from sugarcane has obvious advantages due to the amount of photosynthate accumulated during the crop cycle and the low production costs of sugarcane. The rise of cellulosic ethanol technologies will allow the conversion of part of the sugarcane lignocellulosic materials into ethanol, thus maximizing the utilization of this crop as a biofuel feedstock. Despite the rapid progress made in recent years, breeding and biotechnology have been hampered by the complex nature of sugarcane genetics and physiology. Biotechnology and marker-assisted breeding have great potential for generating cultivars and optimizing the utilization of sugarcane sucrose and lignocellulosic materials as a source of fuel ethanol. Other sugar-producing plants, such as sweet sorghum and sugar beet, are also potential biofuel sources, especially in water-limited and temperate areas, respectively, where sugarcane cultivation is not economically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL, Piperidis G (2002) Marker assisted introgressing of high sucrose genes in sugarcane. In: Proceedings of the 12th Australasian Plant Breeding Conference, Perth, Australia, 15–20 September 2002. p 120

    Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Akin D (2007) Grass lignocellulose. Appl Biochem Biotechnol 137–140:3–15

    Article  PubMed  Google Scholar 

  • Amyris Biotechnologies (2009) Amyris Brasil, www.amyris.com/index.php?option=com_content&task=view&id=69&Itemid=257. Cited 28 September 2009

  • Arencibia AD, Carmona ER (2006) Sugarcane (Saccharum spp.). Methods Mol Biol 344:227–235

    PubMed  CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, Riva GADl, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breeding 3:247–255

    Article  Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969

    Article  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau J-Y, Télismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214

    PubMed  CAS  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Burnquist WL, Silva-Filho MC, Ulian EC (2001) A new approach for control of Diatraea saccharalis (Lepidoptera: Crambidae) through the expression of an insecticidal CryIa(b) protein in transgenic sugarcane. Proc Int Soc Sugar Cane Technol 24:331–336

    Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seeds 5:209–221

    Article  Google Scholar 

  • Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326

    Article  PubMed  CAS  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    Article  PubMed  CAS  Google Scholar 

  • Calsa T, Figueira A (2007) Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63:745–762

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Jung HG, Coblentz WK (2008) Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Sci 48:424–433

    Article  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Casu RE, Jarmey JM, Bonnett GD, Manners JM (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7:153–167

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  • Christensen A, Quail P (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Christy L, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro G, Casu R, McIntyre C, Manners J, Henry R (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro G, Eliott F, McIntyre C, Casu R, Henry R (2006) Characterisation of single nucleotide polymorphisms in sugarcane ESTs. Theor Appl Genet 113:331–343

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro G, Amouyal O, Eliott F, Henry R (2007) Sugarcane. In: Kole C (ed) Pulses, sugar and tuber crops, vol 3. Springer, Heidelberg, pp 175–203

    Chapter  Google Scholar 

  • Coyle W (2007) The future of biofuels: a global perspective. http://www.ers.usda.gov/AmberWaves/November07/Features/Biofuels.htm Cited 19 September 2009

  • Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots. Planta, doi: 10.1007/s00425-010-1138-5

    Google Scholar 

  • Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28:294–298

    Article  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30

    Article  PubMed  CAS  Google Scholar 

  • De Souza AP, Gaspar M, da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, dos Santos R, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Souza GM, Menossi M, Vincentz M, Van-Sluys M-A, Glaszmann JC, Ulian E (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical crop plants, vol 1. Springer, New York, pp 483–513

    Chapter  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163

    Article  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  PubMed  CAS  Google Scholar 

  • Falco M, Silva-Filho M (2003) Expression of soybean proteinase inhibitors intransgenic sugarcane plants: effects on natural defense against Diatrea saccharalis. Plant Physiol Biochem 41:761–766

    Article  CAS  Google Scholar 

  • Falco MC, Tulmann Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  Google Scholar 

  • FAOSTAT (2007) FAO (United Nations Food and Agricultural Organization), Rome. http://faostat.fao.org/default.aspx Cited 17 September 2009

  • Food and Agricultural Policy Research Institute (2009) FAPRI 2009 U.S. and World Agricultural Outlook. http://www.fapri.iastate.edu/outlook/2009/ Cited 18 September 2009

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Francis SA (2006) The development of sugarbeet. In: Draycott AP (ed) Sugar beet. Wiley-Blackwell, Oxford, pp 9–29

    Chapter  Google Scholar 

  • Freelman KC, Braodhead DM, Zummo N, Westbrook FE (1986) Sweet sorghum culture and syrup production. USDA Agriculture Handbook, Number 611, United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gao ZS, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  PubMed  CAS  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, San Secundo B, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the Spotted Stem Borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC, Dufour P, Grivet L, D’Hont A, Deu M, Paulet F, Hamon P (1997) Comparative genome analysis between several tropical grasses. Euphytica 96:13–21

    Article  CAS  Google Scholar 

  • Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Godwin ID (2004) Sorghum genetic engineering: current status and prospectus. In: Seetharama N, Godwin I (eds) Sorghum tissue culture and transformation. Oxford & IBH, New Delhi, pp 1–8

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37:10–14

    Article  Google Scholar 

  • Grivet L, D’Hont A, Dufour P, Hamon P, Roques D, Glaszmann JC (1994) Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73:500–508

    Article  CAS  Google Scholar 

  • Grivet L, Glaszmann JC, Vincentz M, da Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  CAS  Google Scholar 

  • Groenewald J-H, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92

    Article  PubMed  CAS  Google Scholar 

  • Groenewald J-H, Hiten NF, Botha FC (2000) The introduction of an inverted repeat to the 5’ untranslated leader sequence of a transgene strongly inhibits gene expression. Plant Cell Rep 19:1098–1101

    Article  CAS  Google Scholar 

  • Guimarães CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  Google Scholar 

  • Gupta P, Rustgi S, Mir R (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Hoarau J-Y, Grivet L, Offmann B, Raboin L-M, Diorflar J-P, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719

    Article  PubMed  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agric Res 59:13–26

    Article  CAS  Google Scholar 

  • Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Xu J (2009) Source-sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci 60:316–327

    Article  CAS  Google Scholar 

  • Irvine J (1975) Relations of photosynthetic rates and leaf canopy characters to sugarcane yield. Crop Sci 15:671–676

    Article  Google Scholar 

  • Ivic-Haymes SD, Smigocki AC (2005) Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Rep 23:699–704

    Article  PubMed  CAS  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaiah V, Kavi Kishor PB (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol Plant 43:159–166

    Google Scholar 

  • Lakshmanan P, Geijskes R, Aitken K, Grof C, Bonnett G, Smith G (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    Article  CAS  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  PubMed  CAS  Google Scholar 

  • Licht FO (2006) World ethanol markets—the outlook to 2015. Agra Informa, Tunbridge Wells, UK

    Google Scholar 

  • Lima DU, Santos HP, Tiné MA, Molle FRD, Buckeridge MS (2001) Patterns of expression of cell wall related genes in sugarcane. Genet Mol Biol 24:191–198

    Article  CAS  Google Scholar 

  • Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL Jr, de Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38

    Article  PubMed  CAS  Google Scholar 

  • Macedo IC, Cortez LAB (2000) Sugar-cane industrial processing in Brazil. In: Rosillo-Calle F, Bajay SV, Rothman H (eds) Industrial uses of biomass energy. Taylor-Francis, London, pp 140–154

    Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  PubMed  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Ferro J, Arruda P (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant 45:372–381

    Article  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Watt DA, Cramer MD (2008a) Changes in photosynthetic rates and gene expression of leaves during a source sink perturbation in sugarcane. Ann Bot 101:89–102

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008b) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008c) Culm sucrose accumulation promoter physiological decline of mature leaves in ripening sugarcane. Field Crops Res 108:250–258

    Article  Google Scholar 

  • McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR (2005) Identification and validation of molecular markers associated with Pachymetra Root Rot and Brown Rust resistance in sugarcane using map- and association-based approaches. Mol Breeding 16:151–161

    Article  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Sorghum and Saccharum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1882

    PubMed  CAS  Google Scholar 

  • Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Aust J Plant Physiol 22:661–679

    Article  CAS  Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2008) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558

    Article  PubMed  CAS  Google Scholar 

  • Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237

    Article  Google Scholar 

  • Nicholson TL (2007) Carbon turnover and sucrose metabolism in the culm of transgenic sugarcane producing 1-kestose. MSc Thesis. University of Stellenbosch, Matieland, South Africa

    Google Scholar 

  • Nogueira FTS, De Rosa VE Jr, Menossi M, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FTS, Schlögl PS, Camargo SR, Fernandez JH, Vicente E, De Rosa J, Pompermayer P, Arruda P (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169:93–106

    Article  CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA, Taylor GO, McQualter RB, Smith GR (1999) Transgenic sugarcane with increased resistance to canegrubs. Proc Aust Soc Sugar Cane Technol 21:171–176

    Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breeding 20:189–208

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AAF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209

    Article  PubMed  CAS  Google Scholar 

  • Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Papini-Terzi F, Rocha F, Vencio R, Felix J, Branco D, Waclawovsky A, Del Bem L, Lembke C, Costa M, Nishiyama M, Vicentini R, Vincentz M, Ulian E, Menossi M, Souza G (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120

    Article  PubMed  CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Nicoliello Vencio RZ, Oliveira KC, de Maria Felix J, Vicentini R, de Souza Rocha C, Quirino Simões AC, Ulian EC, Marli Zingaretti di Mauro S, Maria Da Silva A, Alberto de Braganca Pereira C, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Pessoa A Jr, Mancilha IM, Sato S (1997) Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz J Chem Eng 14:309–312

    Article  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804

    Article  PubMed  CAS  Google Scholar 

  • Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, Souza APd (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384

    Article  CAS  Google Scholar 

  • Porter KS, Axtell J D, Lechtenberg VL, Colenbrander V F (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  • Prasad P, Vu J, Boote K, Allen L (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769

    Article  CAS  Google Scholar 

  • Prasad S, Singh, Anoop, Jain N, Joshi H C (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420

    Article  CAS  Google Scholar 

  • Raboin L, Oliveira K, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau J, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Ramos RLB, Tovar FJ, Junqueira RM, Lino FB, Sachetto-Martins G (2001) Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet Mol Biol 24:235–241

    Article  CAS  Google Scholar 

  • Reffay N, Jackson PA, Aitken KS, Hoarau J-Y, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breeding 15:367–381

    Article  CAS  Google Scholar 

  • Rocha F, Papini-Terzi F, Nishiyama M, Vencio R, Vicentini R, Duarte R, de Rosa V, Vinagre F, Barsalobres C, Medeiros A, Rodrigues F, Ulian E, Zingaretti S, Galbiatti J, Almeida R, Figueira A, Hemerly A, Silva-Filho M, Menossi M, Souza G (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys M-A, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419

    Article  PubMed  CAS  Google Scholar 

  • Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 211–248

    Chapter  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genome-wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum (Sorghum bicolor (L.) Moench) identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sainz M (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Remans T, Sági L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    Article  PubMed  CAS  Google Scholar 

  • Schlögl PS, Nogueira FTS, Drummond R, Felix JM, de Rosa VE Jr, Vicentini R, Leite A, Ulian EC, Menossi M (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345

    Article  PubMed  CAS  Google Scholar 

  • Sendelius J (2005) Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. MSc Thesis. Lund University, Lund, Sweden

    Google Scholar 

  • Sévenier R, Hall RD, van der Meer I, Hakkert HJ, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846

    Article  PubMed  Google Scholar 

  • Songstad DD, Lakshmanan P, Chen J, Gibbons W, Hughes S, Nelson R (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 45:189–192

    Article  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Sugarcane Genome Sequencing Initiative (2009) In: Proceedings of the Plant and Animal Genome XVIII Conference, San Diego, CA

    Google Scholar 

  • Syvänen A-C (2005) Toward genome-wide SNP genotyping. Nat Genet 27:S5–S10

    Article  CAS  Google Scholar 

  • UNICA (2009) União das Indústrias de Cana-de-açúcar. Dados e Cotações—Estatísticas. http://www.unica.com.br/dadosCotacao/estatistica/ Cited 18 September 2009

  • University of Queensland (2009) UQ researchers produce world’s first transgenic sweet sorghum. http://www.uq.edu.au/news/index.html?article=20025 Cited 13 November 2009

  • USDA (2006) The economic feasibility of ethanol production from sugar in the United States. US Department of Agriculture. http://www.usda.gov/oce/reports/energy/EthanolSugarFeasibilityReport3.pdf Cited 18 October 2009

  • Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti EA, Lemos MVF, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci M Jr, Goldman MHS, Gomes SL, Nunes LR, Camargo LEA, Siqueira WJ, Van Sluys M-A, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon MLPN, Ferro JA, Silveira HCS, Marini DC, Lemos EGM, Monteiro-Vitorello CB, Tambor JHM, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MMA, de Rosa Jr. VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SMZ, Nobrega FG, Menck CFM, Braga MDV, Telles GP, Cara FAA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 3:301–307

    Article  CAS  Google Scholar 

  • Vu JCV, Allen LH Jr, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131

    Article  CAS  Google Scholar 

  • Vu JCV, Allen LH Jr (2009a) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116

    Article  PubMed  CAS  Google Scholar 

  • Vu JCV, Allen LH Jr (2009b) Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. J Plant Physiol 166:1141–1151

    Article  PubMed  CAS  Google Scholar 

  • Wand S, Midgley G, Jones M, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741

    Article  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Article  PubMed  CAS  Google Scholar 

  • Weng L-X, Deng H, Xu J-L, Li Q, Wang L-H, Jiang Z, Zhang HB, Li Q, Zhang L-H (2006) Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Manag Sci 62:178–187

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DarT) for whole genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Weyens G, Ritsema T, Van Dun K, Meyer D, Lommel M, Lathouwers J, Rosquin I, Denys P, Tossens A, Nijs M, Turk S, Gerrits N, Bink S, Walraven B, Lefèbvre M, Smeekens S (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J 2:321–327

    Article  PubMed  CAS  Google Scholar 

  • Whittaker A, Botha FC (1999) Pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity patterns in relation to sucrose storage across sugarcane varieties. Physiol Plant 107:379–386

    Article  CAS  Google Scholar 

  • Woods J (2001) The potential for energy production using sweet sorghum in southern Africa. Energ Sustain Develop 5:31–38

    Article  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  PubMed  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technol 96:1959–1966

    Article  CAS  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank several colleagues at Monsanto who made helpful contributions to the content or editing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Dante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dante, R.A., Cristofoletti, P.T., Gerhardt, I.R. (2010). Engineering Advantages, Challenges and Status of Sugarcane and other Sugar-Based Biomass Resources. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_4

Download citation

Publish with us

Policies and ethics