Skip to main content

Development and Utilization of Sorghum as a Bioenergy Crop

  • Chapter
Genetic Improvement of Bioenergy Crops

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480

    PubMed  CAS  Google Scholar 

  • Agrama, H., Widle, G., Reese, J., Campbell, L., and Tuinstra, M. (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor. Appl. Genet. 104, 1373–1378.

    PubMed  CAS  Google Scholar 

  • Alam, S., Ali, A., Qamar, I. A., Arshad, M., and Sheikh, S. (2001) Correlation of economically important traits in Sorghum bicolor varieties. J. Biol. Sci. 1, 330–331.

    Google Scholar 

  • Ayyangar, G. N. R. (1942) The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J. Agric. Sci. 12, 528–563.

    Google Scholar 

  • Ayyangar, G. N. R., and Ponnaiya, B. W. X. (1937) The occurrence and inheritance of earheads with empty anther sacs in sorghum. Curr. Sci. 8, 116.

    Google Scholar 

  • Ayyangar, G., Ayyar, M., Rao, V., and NambiarA. (1936) Mendelian segregation for juiciness and sweetness in sorghum stalk. Madras Agric. J. 24, 247.

    Google Scholar 

  • Bandyopadhyay, R., Frederickson, D. E., McLaren, N. W., Odvody, G. N., and Ryley, M. J. (1998) Ergot: A new disease threat to sorghum in the Americas and Australia. Plant Dis. 82, 356–367.

    Google Scholar 

  • Bantilan, M. C. S., Deb, U. K., Gowda, C. L. L., Reddy, B. V. S., Obilana, A. B., and Evenson, R. E. (2004) Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India.

    Google Scholar 

  • Barabas, Z. (1962) Observation of sex differentiation in sorghum by use of induced male- sterile mutants. Nature 195, 257–259.

    Google Scholar 

  • Battraw, M., and Hall, T. C. (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and ß-glucuronidase genes. Theor. Appl. Genet. 82, 161–168.

    CAS  Google Scholar 

  • Beraho, E. K., and Olembo, R. J. (1971) Albino and nonpolyploid mutants induced by colchicine in sorghum. J. Hered. 62, 376–379.

    Google Scholar 

  • Berhan, A. M., Hulbert, S. H., Butler, L. G., and Bennetzen, J. L. (1993) Structure and evolution of the genomes of sorghum bicolor andZea mays. Theor. Appl. Genet. 86, 598–604.

    CAS  Google Scholar 

  • Bhattramakki, D., Dong, J., Chhabra, A. K., and Hart, G. E. (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43, 988–1002.

    PubMed  CAS  Google Scholar 

  • Bittinger, T. S., Cantrell, R. P., Axtell, J. D. (1981) Allelism tests of the brown-midrib mutants of sorghum. J. Hered. 72, 147–148

    Google Scholar 

  • Bitzer, M. J. (1997) Production of Sweet Sorghum for syrup in Kentucky. University of Kentucky Cooperative Extension Service, Lexington, KY.

    Google Scholar 

  • Blum, A. (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56, 1159–1168.

    Google Scholar 

  • Bolsen, K. K., H. Ilg, R. V. Pope, M. A. Hinds, and Hoover, J. (1983) Whole-plant forage, grain, or non-heading sorghum silages, cornlage, and feed flavor supplements for growing cattle. Kansas Agric. Exp. Sta. Rep. Progr. 427, 46–52.

    Google Scholar 

  • Bogo, A. (2001) Biochemical physiopathology or some ergot fungi and other honeydewproducing plant parasites. Ph.D Thesis, Imperial College of Science, Technology and medicine, London, UK.

    Google Scholar 

  • Bogo, A., Mantle, P. G., and Harthmann, O. E. L. (2004) Screening of sweet sorghum accessions for inhibition of secondary sporulation and saccharide measurements in honeydew of Claviceps africana. Fitopatol. Bras. 29, 86–90.

    Google Scholar 

  • Boivin, K., Deu, M., Rami, J. F., Trouche, G., and Hamon, P. (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor. Appl. Genet. 98, 320–328.

    CAS  Google Scholar 

  • Borovkova, I. G., Jin, Y., and Steffenson, B. J. (1998) Chromosomal Location and Genetic relationship of leaf rust resistance genes Rph9 and Rph12 in Barley. Phytopathology. 88, 76–80.

    Google Scholar 

  • Bout, S., and Vermerris, W. (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics. 269, 205–214.

    PubMed  CAS  Google Scholar 

  • Bowers, J. E., Abbey, C., Anderson, S., Chang, C., Draye, X., Hoppe, A. H., Jessup, R., Lemke, C., Lennington, J., Li, Z., Lin, Y., Liu, S.,. Luo, L., Marler, B., Ming, R., Mitchell., Qiang, D., Reischmann, K., Schulze, S., Skinner, D., Wang, Y., Kresovich, S., Schertz, K., Paterson, A. (2003) A high-density genetic recombination map of sequencetagged sites for sorghum, as a framework for comparative, structural and evolutionary genomics of tropical grains and grasses. Genetics 165, 367–386.

    PubMed  CAS  Google Scholar 

  • Bramel-Cox, P. J., and Claflin, L. E. (1989) Selection for resistance to Macrophomina phaseolina and Fusarium moniliforme in sorghum. Crop Sci. 29, 1468–1472.

    Google Scholar 

  • Bucholtz, D. L., Cantrell, R. P., Axtell, J. D., and Lechtenberg, V. L. (1980). Lignin biochemistry of normal and brown midrib mutant sorghum. J. Agric. Food Chem. 28, 1239–1241.

    CAS  Google Scholar 

  • Cai, T., and Butler, L. (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell, Tissue and Organ Culture 20, 101–110.

    Google Scholar 

  • Cai, T., Ejeta, G., Axtell, J. D., and Butler, L. G. (1990) Somaclonal variation in high tannin sorghums. Theor. Appl. Genet. 79, 737–747.

    Google Scholar 

  • Caniato, F. F., Guimarães, C. T., Schaffer, R. E., Alves, V.M.C., L. Kochian V., Borém, A., Klein, P. E., and Magalhaes J. V. (2007) Genetic diversity for aluminum tolerance in sorghum. Theor. Appl. Genet 114, 863–876.

    PubMed  CAS  Google Scholar 

  • Casas, A. M., Kononowicz, A. K., Haan, T. G., Zhang, L., Tomes, D. T., Bressan, R. A., and Hasegawa, P. M. (1997) Transgenic sorghum plants obtained after microporjectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant. 33, 92–100.

    Google Scholar 

  • Chang, V. S., and Holtzapple, M. T. (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84, 5–38.

    PubMed  Google Scholar 

  • Charles, N., Mansfield, S. D., Mirochnik, O., and Duff, S. J. B. (2003) Effect of oxygen delignification operating parameters on downstream enzymatic hydrolysis of softwood substrates. Biotechnol. Progr. 19, 1606–1611.

    CAS  Google Scholar 

  • Chase, C. D., and Pring, D. R. (1985) Circular plasmid DNAs from mitochondria of Sorghum bicolor. Plant Mol. Biol. 5, 303–311.

    CAS  Google Scholar 

  • Chittenden, L. M., Schertz, K. F., Lin, Y. R., Wing, R. A., and Paterson, A. H. (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor. Appl. Genet. 87, 925–933.

    CAS  Google Scholar 

  • Curtis, D. L. (1968) The relation between the date of heading of nigerian sorghums and the duration of the growing season. J. Appl. Ecol. 5, 215–226.

    Google Scholar 

  • Dahlberg, J. A., Bandyopadhyay, R., Rooney, W. L., Odvody, G. N., and Madera-Torres, P. (2001) Evaluation of sorghum germplasm used in US breeding programmes for sources of sugary disease resistance. Plant Pathol. 50, 681–689.

    Google Scholar 

  • Dang, L. H., and Pring, D. R. (1986) A physical map of the sorghum chloroplast genome. Plant Mol. Biol. 6, 119–123.

    CAS  Google Scholar 

  • Dercas, N., and Liakatas, A. (2007) Water and radiation effect on sweet sorghum productivity. Water Resour. Manag. 21, 1585–1600.

    Google Scholar 

  • Doggett, H. (1988) Sorghum, 2nd edition. Wiley, New York.

    Google Scholar 

  • Downes, R. W. (1970) Effect of light intensity and leaf temperature on photosynthesis and transpiration in wheat and sorghum. Aust. J. Biol. Sci. 23, 775–782.

    CAS  Google Scholar 

  • Draude, K. M., Kurniawan, C. B., and Duff, S. J. B. (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Biores. Technol. 79, 113–120.

    CAS  Google Scholar 

  • Ejeta, G., and Grenier, C. (2005) Sorghum and its weedy hybrids. In: Gressel, J, (ed.), Crop Ferality and Volunteerism, CRC Press, Taylor and Francis Group, USA. pp. 123–135

    Google Scholar 

  • Ekanayake, I. J., and Garrity, D. P. (1985) Root pulling resistance in rice: Inheritance and association with drought tolerance. Euphytica 34, 905–913

    Google Scholar 

  • Erpelding, J., and Prom, L. (2006) Variation for anthracnose resistance within the sorghum germplasm collection from Mozambique, Africa. J. Plant Pathol. 5, 28–34.

    Google Scholar 

  • Erpelding, J., and Wang, M. (2007) Response to anthracnose infection for a random selection of sorghum germplasm. Plant Pathol. J. 6, 127–133.

    Google Scholar 

  • Erpelding, J. E., and Louis, K. (2004) Evaluation of Malian sorghum germplasm for rsistance against anthracnose. Plant Pathol. J. 3, 65–71.

    Google Scholar 

  • Erpelding, J. E., Prom, L. K., and Rooney, W. L. (2005) Variation in anthracnose resistance within the Sudanese sorghum germplasm collection. Plant Genet. Res. Newsl. 141, 11–14.

    Google Scholar 

  • Fehr, W. R. (1991) Principles of Cultivar Development. Theory and Technique, 2nd edition. Volume 1. Iowa State University, Ames, Iowa.

    Google Scholar 

  • Feltus, F., Hart, G., Schertz, K., Casa, A., Kresovich, S., Abraham, S., Klein, P., Brown, P., and Paterson, A. (2006) Alignment of genetic maps and QTLs between inter- and intraspecific sorghum populations. Theor. Appl. Genet. 112, 1295–1305.

    PubMed  CAS  Google Scholar 

  • Frederiksen, R. A. (2000) Diseases and disease management in Sorghum, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 497–533.

    Google Scholar 

  • Frederiksen, R. A., and Odvody, G., eds. (2000) Compendium of Sorghum Diseases 2nd edition. APS Press, St. Paul, MN.

    Google Scholar 

  • Freeman, K. W., Girma, K., Arnall, D. B., Mullen, R. W., Martin, K. L., Teal, R. K., and Raun, W. R. (2007) By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99, 530–536.

    CAS  Google Scholar 

  • Funnell, D. L. (2006) Reaction of sorghum lines genetically modified for reduced lignin content to infection by Fusarium and Alternaria spp. Plant Dis. 90, 331–338.

    CAS  Google Scholar 

  • Gao, Z. S., Jayaraj, J., Muthukrishnan, S., Claflin, L., and Liang, G. H. (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48, 321–333.

    PubMed  CAS  Google Scholar 

  • Godwin, I., and Chikwamba, R. (1994) Transgenic grain sorghum (Sorghum bicolor) plants via Agrobacterium In: R. J. Henry, and J. A. Ronalds (Eds.), Improvement of Cereal Quality by Genetic Engineering. Plenum Press, New York. pp. 47–53.

    Google Scholar 

  • Gomez, M. I., Nurul Islam-Faridi, M., Woo, S. S., Schertz, K. F., Czeschin, D., Zwick, M. S., Wing, R. A., Stelly, D. M., and Price, H. J. (1997) Fish of a maize SH 2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40, 475–478.

    PubMed  CAS  Google Scholar 

  • Gowda, P. S. B., Xu, G. W., Frederiksen, R. A., and Magill, C. W. (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38, 823–826.

    PubMed  CAS  Google Scholar 

  • Greene, D. (1997) Biomass Yield and Chemical Composition of Sorghum and Rye Doublecropped on Marginal Land. Thesis, Purdue University, West Lafayette, IN.

    Google Scholar 

  • Hagio, T., Blowers, A. D., and Earle, E. D. (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10, 260– 264.

    CAS  Google Scholar 

  • Harris, K., Subudhi, P.K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., and Mullet, J. (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 58, 327–38.

    PubMed  CAS  Google Scholar 

  • Hart, G. E., Schertz, K. F., Peng, Y., and Syed, N. H. (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor. Appl. Genet. 103, 1232–1242.

    CAS  Google Scholar 

  • Haussmann, B., Mahalakshmi, V., Reddy, B., Seetharama, N., Hash, C., and Geiger, H. (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor. Appl. Genet. 106, 133–142.

    PubMed  CAS  Google Scholar 

  • Hodnett, G. L., Burson, B. L., Rooney, W. L., Dillon, S. L., and Price, H. J. (2005) Pollenpistil interactions result in reproductive isolation between Sorghum bicolor and divergent sorghum species. Crop Sci. 45, 1403–1409.

    Google Scholar 

  • Hoffmann-Thoma, G., Hinkel, K., Nicolay, P., and Willenbrink, J. (1996) Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol. Plant. 97, 277–284.

    CAS  Google Scholar 

  • Holmes, M. G., and Keiller, D.R. (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25, 85–93.

    CAS  Google Scholar 

  • Hondroyianni, D. K., Papakosta, A. A., Gagianas, K. A., and Tsatsarelis, E. (2000) Corn stalk traits related to lodging resistance in two soils of differing salinity. Maydica 45, 125–134.

    Google Scholar 

  • House, L. R. (1985) A Guide to Sorghum Breeding, 2nd edition. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India.

    Google Scholar 

  • Howe, A., Sato, S., Dweikat, I., Fromm, M., and Clemente, T. (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25, 784–791.

    PubMed  CAS  Google Scholar 

  • Hulbert, S. H., Richter, T. E., Axtell, J. D., and Bennetzen, J. L. (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl. Acad. Sci. USA 87, 4251–4255.

    PubMed  CAS  Google Scholar 

  • Jang, C., Kamps, T., Skinner, D., Schulze, S., Vencill, W., Paterson, A. (2006) Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol. 1148–1159.

    Google Scholar 

  • Jenks, M. A., Rich, P. J., Peters, P. J., Axtell, J. D., and Ashworth, E. N. (1992) Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. Int. J. Plant Sci. 153, 311–319.

    Google Scholar 

  • Kaeppler, H. F., and Pedersen, J. F. (1997) Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tissue Organ Cult. 48, 71–75.

    Google Scholar 

  • Kamala, V., Singh, S. D., Bramel, P. J., and Rao, D. M. (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci. 42, 1357-1360.

    Google Scholar 

  • Karper, R. E., and Stephens, J. C. (1936). Floral abnormalities in sorghum. J. Hered. 27, 183– 194.

    Google Scholar 

  • Katsar, C. S., Paterson, A. H., Teetes, G. L., and Peterson, G. C. (2002) Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J. Econ. Entomol. 95, 448– 457.

    PubMed  CAS  Google Scholar 

  • Keating, B. A., Webster, A. J., Hoare, C. P., and Sutherland, R. F. (2004) Observations of the harvesting, transporting and trial crushing of sweet sorghum in a sugar mill. 2004 Conference of the Australian Society of Sugar Cane Technologists, 4–7 May 2004, Brisbane, Queensland, Australia,.

    Google Scholar 

  • Kimber, C. T. (2000) Origins of comesticated sorghum and its early diffusion to India and China, In: C. W. Smith, and R. A. Frederiksen (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 3–98.

    Google Scholar 

  • Klein, P. E., Klein, R. R., Cartinhour, S. W., Ulanch, P. E., Dong, J., Obert, J. A., Morishige, D. T., Schlueter, S. D., Childs, K. L., Ale, M., and Mullet, J. E. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10, 789–807.

    PubMed  CAS  Google Scholar 

  • Klein, R. R., Rodriguez-Herrera, R., Schlueter, J. A., Klein, P. E., Yu, Z. H., and Rooney, W. L. (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor. Appl. Genet. 102, 307–319.

    CAS  Google Scholar 

  • Kochian, L. V., Hoekenga, O. A., and Pineros, M. A. (2004) How do crops plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55, 459–493

    PubMed  CAS  Google Scholar 

  • Krishnasamy, R., Jegadeeswari, D., Surendran, U., Sudhalakshmi, C. (2006) Screening of sorghum (Sorghum bicolor) genotypes. 18th World Congress of Soil Science, 9–15 July 2006, Philadelphia, PA.

    Google Scholar 

  • Kundiyana, D., Bellmer, D., Huhnke, R., and Wilkins, M. (2006) "Sorganol": Production of Ethanol from Sweet Sorghum. 2006 American Society of Agricultural and Biological Engineers Annual International Meeting, Portland, Oregon.

    Google Scholar 

  • Li, G., Gu, W., and Chapman, K. (2004) Sweet Sorghum. China Agricultural Science and Technology Press, Beijing, China.

    Google Scholar 

  • Lin, Y. R., Schertz, K. F., and Paterson, A. H. (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum Population. Genetics 141, 391–411.

    PubMed  CAS  Google Scholar 

  • Ma, H., Gu, M., and Liang, G. H. (1987) Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 73, 389–394.

    CAS  Google Scholar 

  • Magalhaes, J. V., Garvin, D. F., Wang, Y., Sorrells, M. E., Klein, P. E., Schaffert, R. E., Li, L., and Kochian, L. V. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167, 1905–1914

    PubMed  CAS  Google Scholar 

  • Marley, P. S., and Ajayi, O. (2002) Assessment of anthracnose resistance (Colletotrichum graminicola) in sorghum (Sorghum bicolor) germplasm under field Conditions in Nigeria. J. Agric. Sci. 138, 201–208.

    Google Scholar 

  • Martin, J., Waldren, R., and Stamp, D. (2006) Principles of Field Crop Production 4th edition. Pearson Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

  • Massacci, A., Battistelli, A., and Loreto, F. (1996) Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Funct. Plant Biol. 23, 331–340.

    CAS  Google Scholar 

  • Masteller, V. J., and Holden, D. J. (1970) The growth of and organ formation from callus tissue of sorghum. Plant Physiol. 45, 362–364.

    PubMed  CAS  Google Scholar 

  • McIntyre, C. L., Hermann, S. M., Casu, R. E., Knight, D., Drenth, J., Tao, Y., Brumbley, S. M., Godwin, I. D., Williams, S., Smith, G. R., and Manners, J. M. (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor. Appl. Genet. 109, 875–883.

    PubMed  CAS  Google Scholar 

  • Mehta, P. J., Wiltse, C. C., Rooney, W. L., Collins, S. D., Frederiksen, R. A., Hess, D. E., Chisi, M., and TeBeest, D. O. (2005) Classification and inheritance of genetic resistance to anthracnose in sorghum. Field Crops Res. 93, 1–9.

    Google Scholar 

  • Menz, M. A., Klein, R. R., Mullet, J. E., Obert, J. A., Unruh, N. C., and Klein, P. E. (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP{\textregistered}, RFLP and SSR markers. Plant Mol. Biol. 48, 483–499.

    PubMed  CAS  Google Scholar 

  • Menz, M. A., Klein, R. R., Unruh, N. C., Rooney, W. L., Klein, P. E., and Mullet, J. E. (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci. 44, 1236–1244.

    CAS  Google Scholar 

  • Mihashi, S., and Mori, S. (1989) Characterization of mugineic acid Fe transporter in Fedeficient barley roots using the multicompartment transport box method. Biol. Metals 2, 146–154.

    CAS  Google Scholar 

  • Ming, R., Wang Y., Draye, X. Moore, P. Irvine J., and Paterson A. (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor. Appl. Genet. 105, 332–345.

    PubMed  CAS  Google Scholar 

  • Mohan, D. D., and Axtell, J. D. (1975) Diethyl sulfate induced high lysine mutants in sorghum. Proceedings of the 9th Biennial Grain Sorghum Research and Utilization Conference, Lubbock, TX.

    Google Scholar 

  • Moore, G., Devos, K. M., Wang, Z., and Gale, M. D. (1995) Cereal genome evolution: Grasses, line up and form a circle. Curr. Biol. 5, 737–739.

    PubMed  CAS  Google Scholar 

  • Moyer, J. L., Fritz, J. O., and Higgins, J. J. (2004) Trends in forage yield and nutritive value of Sorghum spp. Agron. J. 96, 1453–1458

    Google Scholar 

  • Nagaraj, N., Reese, J. C., Tuinstra, M. R., Smith, C. M., St. Amand, P., Kirkham, M. B., Kofoid, K. D., Campbell, L. R., and Wilde, G. E. (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J. Econ. Entomol. 98, 595–602.

    PubMed  CAS  Google Scholar 

  • Nathan, R. A. (1978) Fuels from Sugar Crops: Systems Study for Sugarcane, Sweet Sorghum, and Sugar Beets. University Press of the Pacific, Honolulu, HI. National

    Google Scholar 

  • Natoli, A., Gorni, C., Chegdani, F., Ajmone Marsan, P., Colombi, C., Lorenzoni, C., and Marocco, A. (2002) Identification o QTLs associated with sweet sorghum quality. Maydica 17, 311–322.

    Google Scholar 

  • Norwood, C. (1994) Profile water distribution and grain yield as affected by cropping system and tillage. Agron. J. 86, 558-563.

    Google Scholar 

  • Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. (2004) Adsorption of purified Trichoderma reesei cellulases and their catalytic domains to steam pretreated softwood and isolated lignin. J. Biotechnol. 107, 65–72.

    PubMed  CAS  Google Scholar 

  • Parh, D. K., Jordan, D. R., Aitken, E. A. B., Gogel, B. J., McIntyre, C. L., and Godwin, I. D. (2006) Genetic Components of variance and the role of pollen traits in sorghum ergot resistance. Crop Sci. 46, 2387–2395.

    Google Scholar 

  • Paterson, A. H., Schertz, K. F., Lin, Y., Liu, S., and Chang, Y. (1995) The weediness of wild ing dispersal and persistence of Johnsongrass, Sorghum halepense (L.). Proc. Natl. Acad. Sci. USA. 92, 6127–6131.

    PubMed  CAS  Google Scholar 

  • Patil-Kulkarni, B. G., Puttarudrappa, A., Kajjari, N. B., and Goud, J. V. (1972) Breeding for rust resistance in sorghum. Indian Phytopathol. 25, 166–168.

    Google Scholar 

  • Pedersen, J., and Fritz, J. (2000) Forages and Fodder, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 797–810.

    Google Scholar 

  • Pedersen, J. F., and Rooney, W. L. (2004) Sorghum. In: L.E. Mosher, B. L. Burton, and L. E. Sollenberger (Eds.), Warm-Season (C4) Grasses. ASA/CSSA/SSSA, Madison. WI.

    Google Scholar 

  • Pedersen, J., Vogel, K., and Funnell, D. (2005) Impact of reduced lignin on plant fitness. Crop Sci. 45, 812–819.

    CAS  Google Scholar 

  • Pillonel, C., Moulder, M., Boon, J., Foster, B., and Binder, A. (1991) Involvement of cinnamyl- alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185, 538–544.

    CAS  Google Scholar 

  • Poirier, Y., Thoma, S., Somerville, C., and Schiefelbein, J. (1991) Mutant of arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97, 1087–1093.

    PubMed  CAS  Google Scholar 

  • Porter, K. S., Axtell, J. D., Lechtenberg, V. L., and Colenbrander, V. F. (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18, 205–208.

    CAS  Google Scholar 

  • Potter, K. N., Jones, O. R., Torbert, H. A., and Unger, P. W. (1997) Crop rotation and tillage effects on organic carbon sequestration in the semiarid southern Great Plains. Soil Sci. Am. J. 162, 140–147.

    CAS  Google Scholar 

  • Premachandra, G. S., Hahn, D. T., Rhodes, D., and Joly, R. J. (1995) Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance. J. Exp. Bot. 46, 1833.

    CAS  Google Scholar 

  • Price, H. J., Hodnett, G. L., Burson, B. L., Dillon, S. L., Stelly, D. M., and Rooney, W. L. (2006) Genotype Dependent Interspecific Hybridization of Sorghum bicolor. Crop Sci. 46, 2617–2622.

    CAS  Google Scholar 

  • Prom, L. K., Erpelding, J. E., and Montes-Garcia, N. (2007) Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose. Comm. Biometry Crop Sci. 2, 26–31.

    Google Scholar 

  • Quinby, J., and Karper, R. E. (1954) Inheritance of height in sorghum. Agron. J. 46, 211–216.

    Google Scholar 

  • Quinby, J. R. (1966) Fourth maturity gene locus in sorghum. Crop Sci. 6, 516–518.

    Google Scholar 

  • Quinby, J. R. (1967) The maturity genes of sorghum. Adv. Agron. 19, 267–305.

    Google Scholar 

  • Quinby, J. R. (1973) The genetic control of flowering and growth in sorghum. Adv. Agron. 25, 125–162.

    CAS  Google Scholar 

  • Quinby, J. R., Hesketh, J. D., and Voigt, R. L. (1973) Influence of temperature and photoperiod on floral initiation and leaf number in sorghum. Crop Sci. 13, 243–246.

    Google Scholar 

  • Quinby, J. R., and Karper, R. E. (1961) Inheritance of duration of growth in the milo group of sorghum. Crop Sci. 1, 8–10.

    Google Scholar 

  • Rana, B. S., Tripathi, D. P., and Rao, N. G. (1976) Genetic analysis of some exotic x Indian crosses in sorghum. XV. Inheritance of resistance to sorghum rust. Indian J Genet Plant Breed 36, 244–249.

    Google Scholar 

  • Reddy, S. P., Fakrudin, B. S., Rajkumar, Punnuri, S. M., Arun, S. S., Kuruvinashetti, M. S., Das, I. K., and Seetharama, N. (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica. 159, 191–198.

    Google Scholar 

  • Reddy, B., Ramesh, S., Reddy, P. S., Ashok Kumar, A. A., Sharma, K. K., Karuppan Chetty, S. M., and Palaniswamy, A. R. (2007a) Sweet Sorghum: Food, Feed, Fodder and Fuel Crop. International Crops Research Institute for the Semi-Arid Tropics. Patancheru , Andhra Pradesh, India.

    Google Scholar 

  • Reddy, B. V. S., Kumar, A. A., and Ramesh, S. (2007b) Sweet sorghum: A Water Saving Bioenergy Crop, In: International conference on Linkages between Energy and Water Management for Agriculture in Developing Countries. International Crops Research Institute for the Semi-Arid Tropics. ICRISAT Campus, Hyderabad, India.

    Google Scholar 

  • Reed, J. D., Ramundo, B. A., Claflin, L. E., and Tuinstra, M. R. (2002) Analysis of resistance to ergot in sorghum and potential alternate hosts. Crop Sci. 42, 1135–1138.

    Google Scholar 

  • Römheld, V., and Marschner, H. (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Physiol. 70, 175–180

    Google Scholar 

  • Rooney, L. W., and Pflugfelder, R. L. (1986) Factors affecting starch digestibility with special emphasis on sorghum and corn. J. Anim. Sci. 63, 1607–1623

    PubMed  CAS  Google Scholar 

  • Rooney, W. L. (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci. 39, 397–400.

    Google Scholar 

  • Rooney, W. L. (2000) Genetics and Cytogenetics, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production, John Wiley, New York, pp. 261-307.

    Google Scholar 

  • Rooney, W., Blumenthal, J., Bean, B., and Mullet, J. (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Bioref. 1, 147–157.

    CAS  Google Scholar 

  • Rosenow, D. T., and Dahlberg, J. A. (2000) Collection, conversion, and utilization of sorghum. In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: History, Technology and Production, John Wiley, New York, pp. 309–328.

    Google Scholar 

  • Saballos, A., Vermerris, W., and Ejeta, G. (2005) Allelic variation among brown midrib mutants of sorghum. 50th ASA-CSSA-SSSA International Annual Meetings. 6–10 November 2005,, Salt Lake City, UT.

    Google Scholar 

  • Saballos, A., Ejeta, G., and Vermerris, W. (2007) Genome-enabled analysis of the CAD gene family in sorghum. XIth Cell Wall Meeting. 12–17 August 2007, Copenhagen, Denmark.

    Google Scholar 

  • Sanchez, A.C., Subudhi, P.K., Rosenow, D.T., and Nguyen, H.T., (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench) Plant Mol. Biol. 48, 713–726.

    PubMed  CAS  Google Scholar 

  • Serraj, R., and Sinclair, T. R. (2002) Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 25, 333–341

    PubMed  Google Scholar 

  • Sharma, H. C., Reddy, B. V. S., Dhillon, M. K., Venkateswaran, K., Pampapathy, G., Folkertsma, R., Hash, C. T., and Sharma, K. K. (2005) Host plant resistance to insects in sorghum: Present status and need for future research. Int. Sorghum Millet Newsl. 46, 36–43.

    Google Scholar 

  • Sherwood, S. P. (1923) Starch in sorghum juice. Ind. Eng. Chem. 15, 727–728.

    CAS  Google Scholar 

  • Sieglinger, J. B. (1936). Leaf number of sorghum stalks. J. Amer. Soc. Agron. 28, 636.

    Google Scholar 

  • Singh K., Chino M., Nishizawa N.K., Ohata T., and Mori, S. (1993) Genotypic variation among Indian graminaceous species with respect to phytosiderophore secretion. In: Randall R. J., Delhaize, E., Richards R.A., and Munns, R. (Eds.) Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 335–339

    Google Scholar 

  • Singh, M., Chaudhary, K., and Boora, K. S. (2006) RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 114, 187–192.

    PubMed  CAS  Google Scholar 

  • Smith, C. W., and Frederiksen, R. A. (2000) Sorghum: Origin, History, Technology and Production, John Wiley, New York.

    Google Scholar 

  • Steduto, P., Katerji, N., Puertos-Molina, H., Unlu, M., Mastrorilli, M., and Rana, G. (1997) Water-use efficiency of sweet sorghum under water stress conditions Gas-exchange investigations at leaf and canopy scales. Field Crops Res. 54, 221–234.

    Google Scholar 

  • Stephens, J. C. (1937) Male sterility in sorghum: Its possible utilization in production of hybrid seed. J. Am. Soc. Agron. 29, 690–6906.

    Google Scholar 

  • Suzuki, S., Lam, T. B., and Liyama, K. (1997) 5-Hydroxyguaiacyl nuclei as aromatic constituents of native lignin. Phytochem. 46, 695–700.

    CAS  Google Scholar 

  • Swanson, A. F., and Parker J. H. (1931) Inheritance of smut resistance and juiciness of stalk in the sorghum cross Red Amber x Feterita. J. Hered. 22, 55

    Google Scholar 

  • Tadesse, Y., Sági, L., Swennen, R., and Jacobs, M. (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult. 75, 1–18.

    CAS  Google Scholar 

  • Takagi, S., Nomoto, K., and Takemoto, T. (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469–477.

    CAS  Google Scholar 

  • Taylor, R. W. (1988) Grain Sorghum: A Manual for Production and Marketing. University of Delaware, Cooperative Extension Service, Newark, DE.

    Google Scholar 

  • Tarpley, L., Lingle, S., Vietor, D., Andrews, D., and Miller, F. (1994) Enzymatic control of nonstructural carbohydrate concentrations in stems and panicles of sorghum. Crop Sci. 34, 446–452.

    Google Scholar 

  • Tenkouano, A., Miller, F. R., Frederiksen, R. A., and Rosenow, D. T. (1993) Genetics of nonsenescence and charcoal rot resistance in sorghum. Theor. Appl. Gen. 85, 644–648.

    Google Scholar 

  • Tesso, T., Claflin, L. E., and Tuinstra, M. R. (2004) Estimation of combining ability for resistance to fusarium stalk rot in grain sorghum. Crop Sci. 44, 1195–1199.

    Google Scholar 

  • Tesso, T. T., Claflin, L. E., and Tuinstra, M. R. (2005) Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Sci. 45, 645–652.

    CAS  Google Scholar 

  • Tew, T., and Cobill, R. (2006) Evaluation of sweet sorghum as a complementary bioenergy crop to sugarcane in Louisiana. J. Am. Soc. Sugar Cane Technol. (serial online) 26, 57. http://www.assct.org/journal/journal.htm

    Google Scholar 

  • Troeh, F. R., and Thompson, L. M. (2005) Soils and Soil Fertility. Blackwell Publishing. Oxford, UK.

    Google Scholar 

  • Trull M. C., and Deikman J. (1998) An Arabidopsis mutant missing one acid phosphatase isoform. Planta 206, 544–50.

    PubMed  CAS  Google Scholar 

  • Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B., and Ejeta, G. (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci. 36, 1337–1344

    CAS  Google Scholar 

  • Undersander, D. J., Lueschen, W. E., Smith, L. H., Kaminski, A. R., Doll, J. D., Kelling, K. A., and Oplinger E. S. (1990) Sorghum for Syrup, In: Alternative Field Crops Manual. University of Wisconsin-Extension, University of Minnesota, Center for the Alternative Plants and Animal Products and the Minnesota Extension Services, Madison, WI; Waseca, MN.

    Google Scholar 

  • Unger, P. W., and Baumhardt, R. L. (1999) Factors related to dryland grain sorghum yield increases: 1939–1997. Agron J. 91, 870–875.

    Google Scholar 

  • Venuto, B. C. (2006). Producing biomass from sorghum x sudangrass hybrids, American Forage and Grassland Conference, 10–14 March 2006, San Antonio, Texas.

    Google Scholar 

  • Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., and Carpita, N. C. (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47: S142–S153

    Google Scholar 

  • Wallace, D. H., and Yan, W. (1998) Plant breeding and whole-system crop physiology: improving adaption, maturity and yield. CAB International, Wallingford, UK.

    Google Scholar 

  • Wang, M. L., Dean, R., Erpelding, J., and Pederson, G. (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: Rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica. 148, 319–330.

    CAS  Google Scholar 

  • Waniska, R. D., Venkatesha, R. T., Chandrashekar, A., Krishnaveni, S., Bejosano, F. P., Jeoung, J., Jayaraj, J., Muthukrishnan, S., and Liang, G. H. (2001) Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. J. Agric. Food. Chem. 49, 4732–4742.

    PubMed  CAS  Google Scholar 

  • Woo, S.-S., Jiang, J., Gill, B. S., Paterson, A. H., and Wing, R. A. (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucl. Acids Res. 22, 4922–4931.

    PubMed  CAS  Google Scholar 

  • Wood, A. J., and Goldsbrough, P. B. (1997) Characterization and expression of dehydrins in water-stressed Sorghum bicolor. Physiol. Plant. 99, 144–152.

    CAS  Google Scholar 

  • Woodfin C. A., Rosenow D. T., and Clark L. E. (1988) Association between the stay green trait and lodging resistance in sorghum. In: Agronomy Abstracts, ASA, Madison, Wisconsin.

    Google Scholar 

  • Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., and Mullet, J. E. (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43, 461–469.

    PubMed  CAS  Google Scholar 

  • Wu, X., Zhao, R., Bean S. R., Seib, P. A., McLaren, J. S., Madl, R. L., Tuinstra, M., Lenz, M. C., and Wang, D. (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem. 84, 130–136

    CAS  Google Scholar 

  • Yang, B., and Wyman, C. E. (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–98.

    PubMed  CAS  Google Scholar 

  • Zhang, J. Y., Broeckling, C. D., Blancaflor, E. B., Sledge, M. K., Sumner L. W., and Wang, Z. Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domaincontaining transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707

    PubMed  CAS  Google Scholar 

  • Zhao, Z.-Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., and Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Muthukrishnan, S., Krishnaveni, S., Wilde, G., Jeoung, J. M., and Liang, G. H. (1998) Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52, 243–252.

    CAS  Google Scholar 

  • Zongo, J.-D., Gouyon, P. H., and Sandmeier, M. (1993) Genetic variability among sorghum accessions from the Sahelian agroecological region of Burkina Faso. Biodivers. Conserv. 2, 627–636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saballos, A. (2008). Development and Utilization of Sorghum as a Bioenergy Crop. In: Vermerris, W. (eds) Genetic Improvement of Bioenergy Crops. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70805-8_8

Download citation

Publish with us

Policies and ethics