Skip to main content
Log in

A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sugarcane varieties are complex polyploids carrying in excess of 100 chromosomes and are derived from interspecific hybridisation between the domesticated Saccharum officinarum and the wild relative S. spontaneum. A map was constructed in , an Australian cultivar, from a segregating F1 population, using 40 amplified fragment length polymorphism (AFLP) primer combinations, five randomly amplified DNA fingerprints (RAF) primers and 72 simple sequence repeat (SSR) primers. Using these PCR-based marker systems, we generated 1,365 polymorphic markers, of which 967 (71%) were single-dose (SD) markers. Of these SD 967 markers, 910 were distributed on 116 linkage groups (LGs) with a total map length of 9,058.3 cM. Genome organisation was significantly greater than observed in previously reported maps for Saccharum spp. With the addition of 123 double-dose markers, 36 (3:1) segregating markers and a further five SD markers, 1,074 markers were mapped onto 136 LGs. Repulsion phase linkage detected preferential pairing for 40 LGs, which formed 11 LG pairs and three multi-chromosome pairing groups. Using SSRs, double-dose markers and repulsion phase linkage, we succeeded in forming 127 of the 136 LGs into eight homo(eo)logy groups (HG). Two HGs were each represented by two sets of LGs. These sets of LGs potentially correspond to S. officinarum chromosomes, with each set aligning to either end of one or two larger LGs. The larger chromosomes in the two HGs potentially correspond to S. spontaneum chromosomes. This suggestion is consistent with the different basic chromosome number of the two species that are hybridised to form sugarcane cultivars, S. spontaneum (x=8) and S. officinarum (x=10), and illustrates the structural relationship between the genomes of these two species. The discrepancy of coverage between HGs highlights the difficulty in mapping large parts of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260

    PubMed  CAS  Google Scholar 

  • Bentley S, Bassam BJ (1996) A robust DNA amplification fingerprinting system applied to analysis of genetic variation within Fusarium oxysporum f.sp. cubense. J Phytopathol 144:207–213

    Article  CAS  Google Scholar 

  • Bhat SR, Gill BS (1985) The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica 34:377–384

    Article  Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polymorphic species. Plant Sci 155:161–168

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Acevedo R, Moreno Díaz de la Espina S, Jouve N, de la Torre C (2004) Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Lu YH, Gonzālez De Lēon D, Grivet L, Feldmann P, Lanaud C, Glaszmann JC (1994) A molecular approach to unravelling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37:222–230

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J-C (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann J-C (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Google Scholar 

  • D’Hont A, Paulet F, Glaszmann J-C (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  PubMed  Google Scholar 

  • Gardiner JR, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using immortalized F2 population. Genetics 134:917–930

    PubMed  CAS  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organisation in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). 1. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoisington D (1992) Laboratory protocols. CIMMYT Applied Molecular Genetics Laboratory, Mexico City

    Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, D’Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann JC (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–18

    Article  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organisation of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution, grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Qu L, Hancock JF (2001) Detecting and mapping repulsion-phase linkage in polyploids with polysomic inheritance. Theor Appl Genet 103:136–143

    Article  CAS  Google Scholar 

  • Roach B (1972) Nobilisation of sugarcane. Proc Int Soc Sugar Cane Technol 14:206–216

    Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys M-A, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419

    Article  PubMed  CAS  Google Scholar 

  • da Silva JAG, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791

    Article  PubMed  CAS  Google Scholar 

  • da Silva JAG, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP and PCR-based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijams M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by a research grant from the Australian Sugar Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Aitken.

Additional information

Communicated by P. Langridge

Denotes variety covered by Australian plant breeding rights.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, K.S., Jackson, P.A. & McIntyre, C.L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110, 789–801 (2005). https://doi.org/10.1007/s00122-004-1813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1813-7

Keywords

Navigation