Skip to main content
Log in

Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-β-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Maqbool SB, Riazuddin S, Sticklen MB (2002) Expression of synthetic cry1ab and cry1ac genes in basmati rice (Oryza sativa L.) variety 370 via Agrobacterium-mediated transformation for the control of the European corn borer (Ostrinia nubilalis) In Vitro Cell Dev Biol 38:213–220

    Article  CAS  Google Scholar 

  • Bailey MR, Woodard SL, Callaway E, Beifuss K, Magallanes-Lundback M, Lane JR, Horn ME, Mallubhotla H, Delaney DD, Ward M, Van Gastel F, Howard JA, Hood EE (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin In Str Biol 8:548–557

    Article  CAS  Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67: 19–25

    Article  PubMed  CAS  Google Scholar 

  • California Rice Commission (2005) Introduction to rice straw management. Available at http://www.calrice.org

  • Chandra Babu R, Nguyen BD, Varapong Chamarerk, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh SK, Palchamy A, Sadasivam S, Sarkarung S, Wade LJ, Nguyen HT (2003) Genetic analysis of drought resistance in rice by molecular markers association between secondary traits and field performance. Crop Sci 43:1457–1469

    Article  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol 40:31–45

    Article  Google Scholar 

  • Chiang CM, Yeh FS, Huang LF, Tseng TH, Wang CS, Lur HS, Shaw JF, Yu SM (2005) Expression of a bifunctional and thermostable amylopullulanase in transgenic rice seeds leads to starch autohydrolysis and altered composition of starch. Mol Breed 15:125–143

    Article  CAS  Google Scholar 

  • Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6:277–285

    Article  CAS  Google Scholar 

  • Dai Z, Hooker BS, Quesenberry RD, Thomas SR (2005) Optimization of Acidothermus celluloyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 14:627–643

    Article  PubMed  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM. (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman R (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Hong CY, Chen KJ, Liu LF, Tseng TH, Wang CS, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinating transgenic rice seeds. Trans Res 13:29–39

    Article  CAS  Google Scholar 

  • Jefferson RA, Kananagh TA, Bevan MW (1987) GUS fusions: Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3301–3306

    Google Scholar 

  • Kabel MA, Van der Maarel MJEC, Klip G, Voragen AGJ, Schols HA (2005) Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol Bioeng 93:56–63

    Article  CAS  Google Scholar 

  • Kayaba H, Meguro H, Muto H, Kamada Y, Adachi T, Yamada Y, Kanda A, Yamaguchi K, Hamada K, Ueki S, Chihara J (2004) Activation of Eosinophils by rice-husk dust exposure: a possible mechanism for the aggravation of asthma during rice harvest. Tohoku J Exp Med 204:27–36

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: A perspective. Internat Sugar Jour 106:147–150

    CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL, Howard JA (1997) Production of Recombinant Proteins in Transgenic Plants: Practical Considerations. Biotechnol Bioeng 56:473–484

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Li WS, Lei T, Zheng J, Zhang Z, Yan XF, Wang ZZ, Wang YL, Si LS (2005) Expression of Human Papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim Biophys Sin 37:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern and synergism. Biotechnol Bioeng 59:621–634

    Article  PubMed  CAS  Google Scholar 

  • NRC (1996) Nutrient requirements of beef cattle, 7th Revised edn. National Academy Press, Washington, DC

  • Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience 55:593–602

    Article  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Bio/technology 22:739–745

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Rice Straw Feedstock Joint Venture (1999) Rice Straw Feedstock Supply Study for Colusa County California, Western Regional Biomass Energy Program, Lincoln, NE

  • Sahrawy M, Avila C, Chueca A, Canovas FM, Lopez-Gorge J (2004) Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J Exp Bot 55:2495–2503

    Article  PubMed  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characterization for biofuels. Curr Opin Biotechnol 17:315–319

    Article  PubMed  CAS  Google Scholar 

  • Teymouri F, Alizadeh H, Laureano-Perez L, Dale BE, Sticklen M (2004) Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl Biochem Biotechnol 116:1183–1192

    Article  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu Rev Energ Env 24:189–226

    Article  Google Scholar 

  • Ziegelhoffer TJ, Raasch A, Austin-Phillips S (2001) Dramatic effects of truncation and subcellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breed 8:147–158

    Article  CAS  Google Scholar 

  • Ziegler MT, Thomas SR, Danna KJ (2000) Accumulation of a thermostable endo-1,4-β-d-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breed 6:37–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DOE/Edenspace (Cooperative Agreement # DE-FG02-04ER86183), Government of Egypt, MSU Research Excellence Funds (REF) and Consortium for Plant Biotechnology Research (CPBR Agreement # GO12026-168). The authors are thankful to National Renewable Energy Laboratory for providing the E1 antibodies, Dr. K. Danna for providing the pZM766-E1cat, USDA-ARS in Beaumont, Texas and the National Small Grains Collection at Aberdeen, Idaho for providing the rice seeds. The authors appreciate the critical review of the manuscript by Dr. Brian Hooker and Dr. Chris Somerville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Sticklen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oraby, H., Venkatesh, B., Dale, B. et al. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16, 739–749 (2007). https://doi.org/10.1007/s11248-006-9064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9064-9

Keywords

Navigation