Skip to main content
Log in

Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Modern sugarcane cultivars (Saccharum spp) are highly polyploïd and aneuploid interspecific hybrids (2n=100–130). Two genetic maps were constructed using a population of 198 progeny from a cross between R570, a modern cultivar, and MQ76-53, an old Australian clone derived from a cross between Trojan (a modern cultivar) and SES528 (a wild Saccharum spontaneum clone). A total of 1,666 polymorphic markers were produced using 37 AFLP primer combinations, 46 SSRs and 9 RFLP probes. Linkage analysis led to the construction of 86 cosegregation groups for R570 and 105 cosegregation groups for MQ76-53 encompassing 424 and 536 single dose markers, respectively. The cumulative length of the R570 map was 3,144 cM, while that of the MQ76-53 map was 4,329 cM. Here, we integrated mapping information obtained on R570 in this study with that derived from a previous map based on a selfed R570 population. Two new genes controlling Mendelian traits were localized on the MQ76-53 map: a gene controlling the red stalk colour was linked at 6.5 cM to an AFLP marker and a new brown rust resistance gene was linked at 23 cM to an AFLP marker. Besides another previously identified brown rust resistance gene (Bru1), these two genes are the only other major genes to be identified in sugarcane so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L ‘SES 208’. Genetics 134:1249–1260

    PubMed  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Telismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Bhat SR, Gill BS (1985) The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica 34:377–384

    Article  Google Scholar 

  • Burner DM, Legendre BL (1993) Chromosome transmission and meiotic stability of sugarcane (Saccharum spp) hybrid derivatives. Crop Sci 33:600–606

    Article  Google Scholar 

  • Burner DM, Legendre BL (1994) Cytogenetic and fertility characteristics of elite sugarcane clones. Sugar Cane 1:6–10

    Google Scholar 

  • Butterfield MK, D’Hont A, Berding N (2001) The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology. Proc S Afr Sug Technol Ass 75:1–5

    Google Scholar 

  • Da Silva JAG, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791

    Article  CAS  Google Scholar 

  • Da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L ‘SES 208’genetic linkage map combining RFLP- and PCR-based markers. Mol Breed 1:165–179

    Article  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivar R570. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109(1–3):27–33

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugarcane Technol 24: 556–559

    Google Scholar 

  • D’Hont A, Lu YH, Gonzàlez de Leòn D, Grivet L, Feldmann P, Lanaud C, Glaszmann JC (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37:222–230

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  CAS  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  CAS  Google Scholar 

  • D’Hont A, Garsmeur O, Raboin LM, Paulet F, Begum D, Wing R, Glaszmann JC (2001) Chromosome walking toward a major resistance gene for common rust of sugarcane. Proc Int Soc Sugarcane Technol 24: 315–317

    Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Guimaraes CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  CAS  Google Scholar 

  • Heinze BS, Thokoane LN, Williams NJ, Barnes JM, Rutherford RS (2001) The smut–sugarcane interaction as a model system for the integration of marker discovery and gene isolation. Proc S Afr Sug Technol Ass 75:88–93

    Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp) I Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp) II Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hoisington D (1992) Laboratory protocols. CIMMYT applied molecular genetics laboratory, Mexico

    Google Scholar 

  • Jannoo N, Grivet L, D’Hont A, Glaszmann JC (2004) Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Heredity 93:460–467

    Article  PubMed  CAS  Google Scholar 

  • Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome 47:988–993

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Machado GR (2001) Sugarcane variety notes—an international directory seventh revision, Piracicaba, Int. Soc. Sugar Cane Techn. Februray 2001, 132p

  • Mather K (1957) The measurement of linkage in heredity. Methuen, London

    Google Scholar 

  • Mehta CR, Patel NR (1983) A network algorithm for performing Fisher’s exact test in rxc contingency tables. J Am Statist Assoc 78:427–434

    Article  Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, Da Silva J, Wilson W, Braga D,Van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002a) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002b) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36: 1362–1363

    Article  CAS  Google Scholar 

  • Panje RR, Babu CN (1960) Studies in Saccharum spontaneum distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AA, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47(5):795–804

    Article  PubMed  CAS  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–105

    Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genet 269:406–419

    CAS  Google Scholar 

  • Ruiz M, Rouard M, Raboin LM, Lartaud M, Lagoda P, Courtois B (2004) Tropgene-DB, a multitropical crop information system. Nucleic Acids Res 32:D364-D367

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1990)SAS procedures guide, ver 6, 3rd edn. SAS Institute Inc, Cary

  • Stevenson GC (1965) Genetics and breeding of Sugar cane. Longmans, London, pp 284

    Google Scholar 

  • Tai PYP, Miller JD, Dean JL (1981) Inheritance of resistance to rust in the sugarcane field. Crops Res 4:261–268

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrels ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

Download references

Acknowledgements

We thank Iréné Promi for his help in the fieldwork. The experiments presented in this paper were conducted in compliance with current French legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -M. Raboin.

Additional information

Communicated by S. J. Knapp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raboin, L.M., Oliveira, K.M., Lecunff, L. et al. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112, 1382–1391 (2006). https://doi.org/10.1007/s00122-006-0240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0240-3

Keywords

Navigation