Skip to main content

Part of the book series: Genome Mapping and Molecular Breeding in Plants ((GENMAPP,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken K, Jackson P, Piperidis G, McIntyre L (2004) QTL identified for yield components in a cross between a sugarcane (Saccharum spp.) cultivar Q165A and a S. officinarum clone IJ76-514. In: Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26 Sept–1 Oct 2004. www.cropscience.org.au

    Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Alix K, Paulet F, Glaszmann JC, D’Hont A (1999) InterAlu like species-specific sequences in the Saccharum complex. Theor Appl Genet 6:854–864

    Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Sacchrum spontaneum (L.)’ sES 208’. Genetics 134:1249–1260

    PubMed  CAS  Google Scholar 

  • Al-Janabi SM, McClelland M, Petersen C, Sobral BWS (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944

    Article  CAS  Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A, Rao P, Feldmann P, Grivet L, Islam-Faridi N, Berding N (2000) Application of synténie across Poaceae to determine the map location of a rust resistance gene of sugarcane. Theor Appl Genet 101:962–969

    Article  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Telismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Beckmann JS, Soller M (1989) Genomic genetics in plant breeding. In: P. Congress. EUCARPIA, Berlin, Germany, pp 91–106

    Google Scholar 

  • Bennett MD (1995) The development and use of genomic in situ hybridisation (GISH) as a new tool in plant biosystematics. In: Brandham PE, Bennett D (eds) Kew Chromosome Conference IV, Royal Botanic Gardens, Kew, pp 167–183

    Google Scholar 

  • Besse P, McIntyre CL, Burner DM, Dealmeida CG (1997) Using genomic slot blot hybridization to assess intergeneric Saccharum×Erianthus hybrids (Andropogoneae-Saccharinae). Genome 40:428–432

    CAS  PubMed  Google Scholar 

  • Birch RG, Franks T (1991) Development and optimisation of microprojectile systems for plant genetic transformation. Aust J Plant Physiol 18:453–469

    CAS  Google Scholar 

  • Birch RG, Maretzki A (1992) Transformation of sugarcane. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry. Springer, Berlin Heidelberg New York, pp 348–360

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksely SD (1988) RFLP maps based on common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming RG, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A highdensity genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Brandes E (1958) Origin, classification and characteristics. USDA Agriculture Handbook

    Google Scholar 

  • Bremer G (1924) The cytology of sugarcane. A cytological investigation of some cultivated kinds and their parents. Genetica 6:497–525

    Article  Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugarcane. Euphytica 10:59–78

    Article  Google Scholar 

  • Britannica Concise Encyclopedia (2005) Sugarcane. Encyclopedia Britannica

    Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  PubMed  CAS  Google Scholar 

  • Burr BJ, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction length polymorphism to plant breeding. In: Setlow JK, Hollaender A (eds) Genetic Engineering vol 5. Plenum, New York, pp 45–59

    Google Scholar 

  • Buzacott JH (1965) Cane varieties and breeding. In: King NJ, Mungomery RW, Hughes CG (eds) Manual of Cane Growing. Angus & Robertson, Sydney, Australia, pp 220–253

    Google Scholar 

  • Cai Q, Aitken K, Deng HH, Chen XW, Cheng F, Jackson PA, McIntyre CL (2005) Verification of the introgression of Erianthus Arundinaceus germplasm into sugarcane. Plant Breed (in press)

    Google Scholar 

  • Coleman RE (1968) Physiology of flowering in sugarcane. In: Proceedings of the XIII Congress of the International Society of Sugar Cane Technologists XIII, pp 992–1000

    Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci 155:161–168

    Article  PubMed  CAS  Google Scholar 

  • Daniels J, Daniels C (1975) Geographical, historical and cultural aspects of the origin of the Indian and Chinese Sugarcanes S. barberi and S. sinense. Sugarcane Breed Newslett 36:4–23

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution in sugarcane. In: Heinz DJ (ed) Sugarcane Improvement Through Breeding. Elsevier, Amsterdam, pp 7–84

    Google Scholar 

  • Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newslett 36:24–39

    Google Scholar 

  • da Silva J, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of S. spontaneum. Genome 36:782–791

    PubMed  CAS  Google Scholar 

  • da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi S, Sorrells ME, Tanksley SD, Sobral B (1995) Saccharum spontaneum L.’ sES 208’ genetic linkage map combining RFLPand PCR-based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • D’Hont A (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37:222–230

    CAS  PubMed  Google Scholar 

  • D’Hont A (2004) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. In: Puertas MJ, Naranjo T (eds) Plant Cytogenetics. CIRAD, UMR1096, Montpellier, France

    Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers: A first decade of research. In: Hogarth DM (ed) Proceedings of the International Society of Sugarcane Technologists XXVI Congress. The Australian Society of Sugar Cane Technologists, Brisbane, Australia, pp 556–559

    Google Scholar 

  • D’Hont A, Layssac M (1998) Analysis of cultivars genome structure by molecular cytogenetics and the study of introgression mechanisms. Centre de coopération internationale en recherche agronomique pour le développement. Annual Crops Department CIRAD-CA, pp 9–10

    Google Scholar 

  • D’Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1:12–15

    Google Scholar 

  • D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum. officinarum×Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91:320–326

    Article  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao P, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  CAS  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  CAS  Google Scholar 

  • Dje Y, Heuertz M, Lefebvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Article  CAS  Google Scholar 

  • Doerge RW, Craig BA (2000) Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci USA 97:7951–7956

    Article  PubMed  CAS  Google Scholar 

  • Dufour P, Grivet L, D’Hont A, Deu M, Trouche G, Glaszmann JC, Hamon P (1996) Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homeologous regions in sorghum and sugarcane. Theor Appl Genet 92:1024–1030

    Article  CAS  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Edwards KJ, Mogg R (2001) Single Nucleotide Polymorphisms. CABI, Lismore, Australia

    Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust J Plant Physiol 18:471–480

    Article  CAS  Google Scholar 

  • Gill B, Friebe B (1998) Plant cytogenetics at the dawn of the 21st century. Curr Opin Plant Biol 1:109–115

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC, Dufour P, Grivet L, D’Hont A, Deu M, Paulet F, Hamon P (1997) Comparative genome analysis between several tropical grasses. Euphytica 96:13–21

    Article  CAS  Google Scholar 

  • Grice J, Wegener MK, Romanach LM, Paton S, Bonaventura P, Garrad S (2003) Genetically modified sugarcane: a case for alternate products. AgBioForum 64:162–168

    Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Dufour P, Hamon P, Roques D, Glaszmann JC (1994) Comparative genome mapping of sugarcane with other species within the andropogoneae tribe. Heredity 73:500–508

    CAS  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J-C (1996 a) RFLP mapping in a highly polyploidy and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996 b) RFLP mapping in cultivated sugarcane (Saccharum spp.): Genome organization in a highly polyploidy and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Grivet L, Glaszmann J-C, Vincentz M, Da Silva FA, Arruda P (2002) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  Google Scholar 

  • Guimaraes CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  CAS  Google Scholar 

  • Harvey M, Botha FC (1996) Use of PCR based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89:257–265

    Article  CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hogarth M (1987) Genetics of Sugarcane. In: Heinz DJ (ed) Developments in crop science. II. Sugarcane improvement through breeding. Elsevier, New York, pp 255–271

    Google Scholar 

  • Hokanson SC, Lamboy WF (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294

    Article  CAS  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds. Natural Histories and Distribution. Wiley, New York

    Google Scholar 

  • Hulbert SH, Richter TE (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Science 87:4251–4255

    CAS  Google Scholar 

  • Jannoo N, Grivet L, Seguiin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Jeswiet J (1929) The development of selection and breeding of the sugarcane in Java. Proceedings of the International Society of Sugarcane Technologists III Congress. The Executive Committee, Soerabaia, pp 44–57

    Google Scholar 

  • Jiang J, Gill B (1994) Nonisotopic in situ hybridisation and plant genome mapping: the first 10 years. Genome 37:717–725

    CAS  PubMed  Google Scholar 

  • Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome 47:988–993

    Article  PubMed  CAS  Google Scholar 

  • Knapp R (2003) Changes in the world sugar situation. USDA Foreign Agricultural Service. http://www.fas.usda.gov/htp/sugar/2003/Article.pdf

    Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • McIntyre L, Aitken K, Berding N, Casu R, Drenth J, Jackson J, Jordan J, Piperidis G, Reffay N, Smith G, Tao Y, Whan V (2001) Identification of DNA markers linked to agronomic traits in sugarcane in Australia. In: Proceedings of the International Society of Sugarcane Technologies, 24:560–562

    Google Scholar 

  • McMullen MD (2003) Quantitative trait locus analysis as a gene discovery tool. In: Grotewold E (ed) Plant Functional Genomics, vol 236. Humana, Totowa, NJ (Methods in Molecular Biology), pp 141–154

    Chapter  Google Scholar 

  • Metcalfe CR (1960) Anatomy of the Monocotyledons. I. Gramineae. Clarendon, Oxford, UK

    Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrels ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002 a) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polypoild genomes. Genome 45:794–803

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Liu S-C, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002 b) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Ming R, Wang Y-W, Draye X, Moore PH, Irvine JE, Paterson AH (2002 c) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Mudge J, Andersen W, Kehrer R, Fairbanks D (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1363

    Article  CAS  Google Scholar 

  • Mulherin KS (1986) The economic importance of sugar and sugar cane — problems and perspectives. In: Sansoucy R, Aarts G, Preston TR (eds) Proceedings of an FAO Expert Consultation, Santo Domingo, Dominican Republic

    Google Scholar 

  • Pan YB, Burner DM, Wei Q, Cordeiro GM, Legendre BL, Henry RJ (2004) New Saccharum hybrids in S. spontaneum cytoplasm developed through a combination of conventional and molecular breeding approaches. Plant Genet Resour 2:131–139

    Article  CAS  Google Scholar 

  • Panje R, Babu C (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Google Scholar 

  • Paterson AH (1996) Mapping genes responsible for differences in phenotype. In: Unit BI (ed) Genome Mapping in Plants. Academic, San Diego, pp 41–54

    Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The Weediness of Wild Plants — Molecular Analysis of Genes Influencing Dispersal and Persistence of Johnson-grass, Sorghum-Halepense (L) Pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Price S (1957) Cytological studies in Saccharum and allied genera. III. Chromosome numbers in interspecific hybrids. Bot Gaz 118:146–159

    Article  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugarcane. Econ Bot 17:97–106

    Google Scholar 

  • Price S (1965) Interspecific hybridization in sugarcane breeding. Proceedings of the International Society of Sugarcane Technologists XII Congress, Puerto Rico, pp 1021–1026

    Google Scholar 

  • Price S (1968) Cytology of Chinese and North Indian sugarcanes. Econ Bot 22:155–164

    Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons. Longman, New York

    Google Scholar 

  • Rao PS (1977) Effects of flowering in yield and quality of sugarcane. Exp Agric 13:381–387

    CAS  Google Scholar 

  • Roach BT (1972) Nobilisation of sugarcane. Proceedings of the International Society of Sugarcane Technologists XIV Congress, pp 206–216

    Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys M-A, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genet 269:406–419

    CAS  Google Scholar 

  • Sills G, Bridges W, Al-Janabi S, Sobral BWS (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. Ex. Grassl). Mol Breed 1:355–363

    Article  CAS  Google Scholar 

  • Skinner JC, Hogarth DM, Wu KK (1987) Selection methods, criteria, and indices. In: Heinz DJ (ed) Developments in Crop Science II: Sugarcane Improvement Through Breeding. Elsevier, New York, pp 409–454

    Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane Improvement Through Breeding. Elsevier, Amsterdam, pp 211–253

    Google Scholar 

  • Stevenson GC (1965) Genetics and Breeding of Sugarcane. Longmans, Green, London, UK

    Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith, Frisch H, Woo DASS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • Toussant M (1987) A History of Food (Trans Anthea Bell 1992). Blackwell, Cambridge, MA

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Wicking C, Williamson B (1991) From linkage markers to genes. Trends Genet 7:288–293

    PubMed  CAS  Google Scholar 

  • Wu K, Burnquist W, Sorrels M, Tew TL, Moore P, Tanksley S (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cordeiro, G., Amouyal, O., Eliott, F., Henry, R. (2007). Sugarcane. In: Kole, C. (eds) Pulses, Sugar and Tuber Crops. Genome Mapping and Molecular Breeding in Plants, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34516-9_11

Download citation

Publish with us

Policies and ethics