Skip to main content
Log in

Characterisation of single nucleotide polymorphisms in sugarcane ESTs

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Commercial sugarcane cultivars (Saccharum spp. hybrids) are both polyploid and aneuploid with chromosome numbers in excess of 100; these chromosomes can be assigned to 8 homology groups. To determine the utility of single nucleotide polymorphisms (SNPs) as a means of improving our understanding of the complex sugarcane genome, we developed markers to a suite of SNPs identified in a list of sugarcane ESTs. Analysis of 69 EST contigs showed a median of 9 SNPs per EST and an average of 1 SNP per 50 bp of coding sequence. The quantitative presence of each base at 58 SNP loci within 19 contiguous sequence sets was accurately and reliably determined for 9 sugarcane genotypes, including both commercial cultivars and ancestral species, through the use of quantitative light emission technology in pyrophosphate sequencing. Across the 9 genotypes tested, 47 SNP loci were polymorphic and 11 monomorphic. Base frequency at individual SNP loci was found to vary approximately twofold between Australian sugarcane cultivars and more widely between cultivars and wild species. Base quantity was shown to segregate as expected in the IJ76-514 × Q165 sugarcane mapping population, indicating that SNPs that occur on one or two sugarcane chromosomes have the potential to be mapped. The use of SNP base frequencies from five of the developed markers was able to clearly distinguish all genotypes in the population. The use of SNP base frequencies from a further six markers within an EST contig was able to help establish the likely copy number of the locus in two genotypes tested. This is the first instance of a technology that has been able to provide an insight into the copy number of a specific gene locus in hybrid sugarcane. The identification of specific and numerous haplotypes/alleles present in a genotype by pyrophosphate sequencing or alternative techniques ultimately will provide the basis for identifying associations between specific alleles and phenotype and between allele dosage and phenotype in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyrén P, Uhlén M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  PubMed  CAS  Google Scholar 

  • Aitken K, Jackson P, Piperidis G, McIntyre L (2004) QTL identified for yield components in a cross between a sugarcane (Saccharum spp.) cultivar Q165A and a S. officinarum clone IJ76-514. In: Proceedings for the 4th international crop science congress, Brisbane, Australia, 26 September–1 October 2004. http://www.cropscience.org.au

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10:1249–1258

    Article  PubMed  CAS  Google Scholar 

  • Bertina RM, Koelemann BPC, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PA (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Rafalski A (2001) Discovery and application of single nucleotide polymorphism markers in plants. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CAB International, Lismore, pp 179–191

    Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  PubMed  CAS  Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugarcane. Euphytica 10:59–78

    Article  Google Scholar 

  • Bundock PC, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109:543–551

    Article  PubMed  CAS  Google Scholar 

  • Bundock PC, Christopher JT, Eggler P, Ablett G, Henry RJ, Holton TA (2003) Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theor Appl Genet 106:676–682

    PubMed  CAS  Google Scholar 

  • Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci 40:1769–1779

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Clayton DG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122

    PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, Dhont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and arteriosclerosis. Arteriosclerosis 8:1–21

    PubMed  CAS  Google Scholar 

  • Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquière A (2001) Rice genomics: present and future. Plant Physiol Biochem 39:323–334

    Article  Google Scholar 

  • D’Hont A (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37:222–230

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Slatkin M (1995) Maximum-likelihood-estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    PubMed  CAS  Google Scholar 

  • Fallin D, Shork NJ (2000) Accuracy of haplotype frequency estimation for biallelic loci, via the EM algorithm for unphased diploid genotype data. Am J Hum Genet 67:947–959

    Article  PubMed  CAS  Google Scholar 

  • Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotide polymorphisms in 65 human genes using assembled expressed sequence tags. Genome Res 9:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J-C (1996) RFLP mapping in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Grivet L, Glaszmann JC, Arruda P (2001) Sequence polymorphism from EST data in sugarcane: a fine analysis of 6-phosphogluconate dehydrogenase genes. Genet Mol Biol 24:161–167

    Article  CAS  Google Scholar 

  • Grivet L, Glaszmann JC, Vincentz M, da Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  CAS  Google Scholar 

  • Gusfield D (2001) Inference of haplotypes from samples of diploid populations: complexity and algorithms. J Comput Biol 8:305–323

    Article  PubMed  CAS  Google Scholar 

  • Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17:475–492

    Article  PubMed  CAS  Google Scholar 

  • Hawley ME, Kidd KK (1995) HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 86:409–411

    PubMed  CAS  Google Scholar 

  • Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele JW, Smith TPL, Chitko-McKown CG, Laegreid WW (2002) Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm Genome 13:272–281

    Article  PubMed  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–887

    Article  PubMed  CAS  Google Scholar 

  • Jannoo N, Grivet L, Seguiin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Lancia G, Pinotti MC, Rizzi R (2004) Haplotyping populations by pure parsimony: complexity of exact and approximation algorithms. INFORMS J Comput 16:348–359

    Article  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005a) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  CAS  Google Scholar 

  • McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR (2005b) Identification and validation of molecular markers associated with pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed 16:151–161

    Article  CAS  Google Scholar 

  • McIntyre CL, Jackson M, Cordeiro G, Amouyal O, Eliott F, Henry RJ, RE Casu, Hermann S, Aitken KS, Bonnett GD (2006) The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed (in press)

  • Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803

    Article  PubMed  CAS  Google Scholar 

  • Mototani H, Mabuchi A, Saito S, Fujioka M, Iida A, Takatori Y, Kotani A, Kubo T, Nakamura K, Sekine A, Murakami Y, Tsunoda T, Notoya K, Nakamura Y, Ikegawa S (2005) A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum Mol Genet 14:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE, Klein RR, Klein PE (2002) Sorghum bicolor—an important species for comparative grass genomics and a source of beneficial genes for agriculture. Curr Opin Plant Biol 5:118–121

    Article  PubMed  CAS  Google Scholar 

  • Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70:157–169

    Article  PubMed  CAS  Google Scholar 

  • Nurmi J, Kiviniemi M, Kujanpaa M, Sjoroos M, Ilonen J, Lovgren T (2001) High-throughput genetic analysis using time-resolved fluorometry and closed-tube detection. Anal Biochem 299:211–217

    Article  PubMed  CAS  Google Scholar 

  • Nyrén P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151:504–509

    Article  PubMed  Google Scholar 

  • Pacey-Miller T, Henry R (2003) SNP detection in plants using a single stranded pyrosequencing protocol with a universal biotinylated primer. Anal Biochem 317:165–170

    Article  CAS  Google Scholar 

  • Pfost DR, Boyce-Jacino MT, Grant DM (2000) A SNPshot: pharmacogenetics and the future of drug therapy. TIBTECH 18:334–338

    CAS  Google Scholar 

  • Quint M, Mihaljevic R, Dussle CM, Xu ML, Melchinger AE, Lubberstedt T (2002) Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Genet 105:355–363

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Rickert AM, Premstaller A, Gebhardt C, Oefner PJ (2002) Genotyping of SNPs in a polyploid genome by pyrosequencing (TM). Biotechniques 32:592–603

    PubMed  CAS  Google Scholar 

  • Ridker PM, Hennekens CH, Lindpainter K, Stampfer MJ, Eisenberg PR, Miletich JP (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332:912–917

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. J Chromatogr B 739:345–355

    Google Scholar 

  • Ronaghi M, Karamohamed D, Petterson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) Real-time pyrophosphate detection for DNA sequencing. Science 281:363–365

    Article  PubMed  CAS  Google Scholar 

  • Ross P, Hall L, Smirnow I, Haff L (1998) High levelmultiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 16:1347–1351

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys M-A, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genet 269:406–419

    CAS  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  • Sills G, Bridges W, Al-Janabi S, Sobral BWS (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. Ex. Grassl). Mol Breed 1:355–363

    Article  CAS  Google Scholar 

  • da Silva J, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of S. spontaneum. Genome 36:782–791

    Article  CAS  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Storm N, Darnhofer-Patel B, van den Boom D, Rodi CP (2003) MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol Biol 212:241–262

    PubMed  CAS  Google Scholar 

  • Syvänen A-C (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10

    Article  PubMed  Google Scholar 

  • Syvänen A-C (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Sing CF, Kessling A, Humphries S (1988) A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics 120:1145–1154

    PubMed  CAS  Google Scholar 

  • Till BJ, Curtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  PubMed  CAS  Google Scholar 

  • Tishkoff SA, Goldman A, Calafell F, Speed WC, Deinard AS, Bonne-Tamir B, Kidd JR, Pafstis AJ, Jenkins T, Kidd KK (1998) A global haplotype analysis of the myotonic dystrophy locus: implications for the evolution of modern humans and for the origin of myotonic dystrophy mutations. Am J Hum Genet 62:1389–1402

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  • Waters DLE, Henry RJ, Reinke RF, Fitzgerald MA (2005) Gelatinisation temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol J (In press)

  • Wu K, Burnquist W, Sorrels M, Tew TL, Moore P, Tanksley S (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genetics 83:294–300

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken with funding from the Cooperative Research Centre for Sugar Industry Innovation through Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni M. Cordeiro.

Additional information

Communicated by E. Guiderdoni

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordeiro, G.M., Eliott, F., McIntyre, C.L. et al. Characterisation of single nucleotide polymorphisms in sugarcane ESTs. Theor Appl Genet 113, 331–343 (2006). https://doi.org/10.1007/s00122-006-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0300-8

Keywords

Navigation