Skip to main content
Log in

Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum spp.) is a highly efficient biomass and sugar producing crop. Leaf reactions have been considered as potential rate-limiting step for sucrose accumulation in sugarcane stalks. To characterize the sugarcane leaf transcriptome, field-grown mature leaves from cultivar “SP80-3280” were analyzed using Serial Analysis of Gene Expression (SAGE). From 480 sequenced clones, 9,482 valid tags were extracted, with 5,227 unique sequences, from which 3,659 (70%) matched at least a sugarcane assembled sequence (SAS) with putative function; while 872 tags (16.7%) matched SAS with unknown function; 523 (10%) matched SAS without a putative annotation; and only 173 (3.3%) did not match any sugarcane ESTs. Based on gene ontology (GO), photosystem (PS) I reaction center was identified as the most frequent gene product location, followed by the remaining sites of PS I, PS II and thylakoid complexes. For metabolic processes, photosynthesis light harvesting complexes; carbon fixation; and chlorophyll biosynthesis were the most enriched GO-terms. Considering the alternative photosynthetic C4 cycles, tag frequencies related to phosphoenolpyruvate carboxykinase (PEPCK) and aspartate aminotransferase compared to those for NADP+-malic enzyme (NADP-ME) and NADP-malate dehydrogenase, suggested that PEPCK-type decarboxylation appeared to predominate over NADP-ME in mature leaves, although both may occur, opposite to currently assumed in sugarcane. From the unique tag set, 894 tags (17.1%) were assigned as potentially derived from antisense transcripts, while 73 tags (1.4%) were assigned to more than one SAS, suggesting the occurrence of alternative processing. The occurrence of antisense was validated by quantitative reverse transcription amplification. Sugarcane leaf transcriptome provided new insights for functional studies associated with sucrose synthesis and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

bp:

Base pairs

CAB:

Chlorophyll a/b-binding protein

EST:

Expressed sequence tag

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GLGI:

Generation of longer cDNA fragments for gene identification

GO:

Gene ontology

GRBP:

Glycine-rich RNA-binding proteins

MPSS:

Massive parallel signature sequencing

MTN:

Metallothionein

NAD:ME:

NAD+-malic enzyme

NADP-ME:

NADP+-malic enzyme

NMDH:

NADP-malate dehydrogenase

PEPCK:

Phosphoenolpyruvate carboxykinase

PAGE:

Polyacrylamide gel electrophoresis

PS:

Photosystem

PCR:

Polymerase chain reaction

RT-qPCR:

Quantitative reverse transcription polymerase chain reaction

SAGE:

Serial analysis of gene expression

SAS:

Sugarcane assembled sequences

References

  • Alexander AG (1973) Sugarcane physiology: a comprehensive study of the Saccharum source-to-sink system. Elsevier, Amsterdam, 752 p

  • Aneeta SMN, Tuteja N, Kumar S (2002) Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem Biophys Res Commun 296:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2005) Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol Plant Microbe Interact 18:487–498

    PubMed  CAS  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Bao J, Lee S, Chen C et al (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 138:1216–1231

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JR, Leegood RC (1997) Photosynthesis. In: Day PM, Harbone JB (eds) Plant biochemistry. Academic Press, San Diego, pp 49–110

    Google Scholar 

  • Breyne P, Zabeau M (2000) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biotech 4:136–142

    Article  Google Scholar 

  • Brown NJ, Parsley K, Hibberd JM (2005) The future of C4 research-maize, Flaveria or Cleome? Trends Plant Sci 10:215–221

    Article  PubMed  CAS  Google Scholar 

  • Calsa TJ, Carraro DM, Benatti MR et al (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46:366–373

    Article  CAS  Google Scholar 

  • Carson DL, Botha FC (2002) Genes expressed in sugarcane maturing internodal tissue. Plant Cell Rep 20:1075–1081

    Article  CAS  Google Scholar 

  • Carson DL, Huckett BI, Botha FC (2002) Sugarcane ESTs differentially expressed in immature and maturing internodal tissue. Plant Sci 162:289–300

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL et al (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC et al (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD et al (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147

    Article  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD et al (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lee S, Zhou G et al (2002) High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3’ complementary DNAs. Genes Chromosomes Cancer 33:252–261

    Article  PubMed  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1999) Genera Graminum: grasses of the world. Kew Publishing, London

    Google Scholar 

  • Coemans B, Matsumura H, Terauchi R et al (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 111:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Daschner K, Couee I, Binder S (2001) The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol 126:601–612

    Article  PubMed  CAS  Google Scholar 

  • van Dillewijn C (1952) Botany of sugarcane. The Chronica Botanica Co., Waltham MA

    Google Scholar 

  • Ekman DR, Wolfe NL, Dean JF (2005) Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Technol 39:6313–6320

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fizames C, Munos S, Cazettes C et al (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol 134:67–80

    Article  PubMed  CAS  Google Scholar 

  • Fravolini A, Williams DG, Thompson TL (2002) Carbon isotope discrimination and bundle sheath leakiness in three C4 subtypes grown under variable nitrogen, water and atmospheric CO2 supply. J Exp Bot 53:2261–2269

    Article  PubMed  CAS  Google Scholar 

  • Fregene M, Matsumura H, Akano A et al (2004) Serial analysis of gene expression (SAGE) of host-plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56:563–571

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Hata S, Izui K (1999) cDNA cloning and characterization of maize phosphoenolpyruvate carboxykinase, a bundle sheath cell-specific enzyme. Plant Mol Biol 41:301–311

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Hata S, Izui K (2000) Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. Plant Cell Physiol 41:1200–1209

    Article  PubMed  CAS  Google Scholar 

  • Fusaro A, Mangeon A, Junqueira RM et al (2001) Classification, expression pattern and comparative analysis of sugarcane expressed sequence’s tags (ESTs) encoding glycine-rich proteins (GRPs). Genet Mol Biol 24:263–273

    Article  CAS  Google Scholar 

  • Gendra E, Moreno A, Alba MM, Pages M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    Article  PubMed  CAS  Google Scholar 

  • Gibbings JG, Cook BP, Dufault M et al (2003) Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotech J 1:271–285

    Article  CAS  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Sci 5:122–127

    Article  CAS  Google Scholar 

  • Grof CPL, Campbell JA (2001) Sugarcane sucrose metabolism: scope for molecular manipulation. Austr J Plant Physiol 28:1–12

    CAS  Google Scholar 

  • Gupta S, Wang BB, Stryker GA et al (2005) Two novel arginine/serine (SR) proteins in maize are differentially spliced and utilize non-canonical splice sites. Biochim Biophys Acta 1728:105–114

    PubMed  CAS  Google Scholar 

  • Hayes R, Kudla J, Gruissem W (1999) Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem Sci 24:199–202

    Article  PubMed  CAS  Google Scholar 

  • Iskandar HM, Simpson RS, Casu RE et al (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression. Plant Mol Biol Rep 22:325–337

    CAS  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jones SJ, Riddle DL, Pouzyrev AT et al (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res 11:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567

    Article  PubMed  CAS  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa N, Washio T, Kosugi S et al (2005) Computational analysis suggests that alternative first exons are involved in tissue-specific transcription in rice (Oryza sativa). Bioinformatics 21:1758–1763

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Dean JF (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol 22:301–310

    PubMed  CAS  Google Scholar 

  • Ma HM, Schulze S, Lee S et al (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863

    Article  PubMed  Google Scholar 

  • Ma J, Morrow DJ, Fernandes J et al (2006) Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol 7:R22

    Article  PubMed  CAS  Google Scholar 

  • Malkin R, Niogy K (2000) Photosynthesis. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville MD, pp 568–628

    Google Scholar 

  • Margulies EH, Innis JW (2000) eSAGE: managing and analysing data generated with serial analysis of gene expression (SAGE). Bioinformatics 16:650–651

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Galbraith DW, Nelson T, Agrawal V (2004a) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol 135:637–652

    Article  CAS  Google Scholar 

  • Meyers BC, Vu TH, Tej SS et al (2004b) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011

    Article  CAS  Google Scholar 

  • Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Austr J Plant Physiol 22:661–679

    Article  CAS  Google Scholar 

  • Moore PH (2005) Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Res 92:119–135

    Article  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vêncio RZN et al (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38

    Article  PubMed  CAS  Google Scholar 

  • Patankar S, Munasinghe A, Shoaibi A et al (2001) Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. Mol Biol Cell 12:3114–3125

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Porat R, Lu P, O’Neill SD (1998) Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204:345–351

    Article  PubMed  CAS  Google Scholar 

  • Poroyko V, Hejlek LG, Spollen WG et al (2005) The maize root transcriptome by serial analysis of gene expression. Plant Physiol 138:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Quéré R, Manchon L, Lejeune M et al (2004) Mining SAGE data allows large-scale, sensitive screening of antisense transcript expression. Nucl Acid Res 32:e163

    Article  CAS  Google Scholar 

  • Ren C, Pan J, Peng W et al (2005) Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42:514–524

    Article  PubMed  CAS  Google Scholar 

  • Robinson SJ, Cram DJ, Lewis CT, Parkin IA (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol 136:3223–3233

    Article  PubMed  CAS  Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim Biophys Acta 1492:1–14

    PubMed  CAS  Google Scholar 

  • Sheen JY, Bogorad L (1986) Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types. Proc Natl Acad Sci USA 83:7811–7815

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Church GM (2002) Computational discovery of sense–antisense transcription in the human and mouse genomes. Genome Biol 3(9):R44

    Article  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates Inc. Publishers, Sunderland MS, pp 214–215

    Google Scholar 

  • Taub DR (2000) Climate and the U.S. distribution of C(4) grass subfamilies and decarboxylation variants of C(4) photosynthesis. Am J Bot 87:1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Wang BB, Brendel V (2006) Genome-wide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci (USA) 103:7175–7180

    Article  CAS  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  CAS  Google Scholar 

  • Walker RP, Leegood RC (1996) Phosphorylation of phosphoenolpyruvate carboxykinase in plants. Studies in plants with C4 photosynthesis and Crassulacean acid metabolism and in germinating seeds. Biochem J 317:653–658

    PubMed  CAS  Google Scholar 

  • Watt DA, McCormick AJ, Govender C et al (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crops Res 92:149–158

    Article  Google Scholar 

  • Wheals AE, Basso LC, Alves DMG, Amorim HV (2001) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  Google Scholar 

  • White J, Pacey-Miller T, Crawford A et al (2006) Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE). Plant Biotech J 4:289–302

    Article  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T et al (2004) Down-regulation of methallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park JH et al (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Shaulsky G (2005) GOAT: an R tool for analyzing gene ontology term enrichment. Appl Bioinform 4:281–283

    Article  Google Scholar 

  • Zhou Y, Zhou C, Ye L et al (2003) Database and analyses of known alternatively spliced genes in plants. Genomics 82:584–595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr Eugenio Cesar Ulian, from “Centro de Tecnologia Canavieira”, for providing plant material; Renato Vicentini and Prof Marcelo Menossi (CBMEG, UNICAMP) for support in bioinformatics; FAPESP for financial support (02/04024-7; 02/04025-7) and CNPq. Technical assistance by Angela Artero, Danielle Scotton and Jeanne Machado was greatly appreciated. We wish to thank anonymous reviewers whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Figueira.

Electronic supplementary material

Below are the link to the electronic supplementary materials.

11103_2006_9121_MOESM1_ESM.pdf

Genes chosen to be validated by quantitative reverse transcription amplification, with respective tentative consensus identification as found in TIGR (http://www.tigr.org); annotation; primer sequences; and expected product size (PDF 103 kb)

ESM2 (XLS 23 kb)

ESM3 (XLS 20 kb)

Fig4

Alternative C4-cycle and carbon fixation metabolic pathways, adapted from Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg). Enzymes are named according to EC number: EC 4.1.1.31: phosphoenolpyruvate carboxylase; EC 1.1.1.82: NADP+-malate dehydrogenase; EC 1.1.1.40: malate dehydrogenase; EC 2.7.9.1 pyruvate, phosphate dikinase; EC 2.6.1.2: alanine transaminase; EC 2.6.1.1: aspartate transaminase; EC 4.1.1.49: phosphoenolpyruvate carboxykinase; EC 2.7.1.40: phosphoenolpyruvate kinase; EC 2.6.1.1: aspartate transaminase; EC 1.1.1.37: malate dehydrogenase; EC 1.1.1.39: NAD-malic enzyme; EC 4.1.1.39: ribulose-bisphosphate carboxylase; EC 2.7.2.3: phosphoglycerate kinase; EC 1.2.1.13: NADP-glyceraldehyde-3-phosphate dehydrogenase; EC 4.1.2.13: fructose-bisphosphate aldolase; EC 5.3.1.1: triose phosphoisomerase ; EC 3.1.3.11: fructose 1,6-bisphosphate 1-phosphatase; EC 2.2.1.1: transketolase; EC 4.1.2.9: phosphoketolase; EC 4.1.2.13: fructose 1,6-diphosphate aldolase; EC 3.1.3.37: sedoheptulose 1,7-diphospate phosphatase; EC 2.7.1.14: sedoheptulokinase; EC 2.2.1.1: transketolase; EC 5.3.1.6: ribose-5-phosphate isomerase; EC 5.1.3.1: ribulose-phosphate 3-epimerase; EC 4.1.2.9: phosphoketolase; EC 2.7.1.19: ribulose-5-phosphate kinase (GIF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calsa, T., Figueira, A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63, 745–762 (2007). https://doi.org/10.1007/s11103-006-9121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9121-z

Keywords

Navigation